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We consider many-body states of bosonic spinor atoms which, at the mean-field level, can be
characterized by a single-particle wave function for the Bose-Einstein condensation and Mott insulating
states. We describe and apply a classification scheme that makes explicit the spin symmetries of such
states and enables one to naturally analyze their collective modes and topological excitations. Quite
generally, the method allows classification of a spin F system as a polyhedron with 2F vertices. We apply
the method to the many-body states of bosons with spins two and three. For spin-two atoms we find the
ferromagnetic state, a continuum of nematic states, and a state having the symmetry of the point group of
the regular tetrahedron. For spin-three atoms we obtain similar ferromagnetic and nematic phases as well
as states having symmetries of various types of polyhedra with six vertices.
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Ultracold atoms in either a single optical trap or in an
optical lattice provide clean realizations of unique systems
of spins which were previously studied only as toy mathe-
matical problems (for a recent review, see [1]). Depending
on which hyperfine state is populated, alkali atoms can
have spin one or two. Different phases of spin-one alkali
bosons have been experimentally realized [2—5] and con-
sidered theoretically [6—12]. Spin-two bosons have also
been experimentally probed [3,13,14] and theoretically
studied for the case of a single optical trap [15,16] as
well as, very recently, an optical lattice [17,18]. Finally,
the Stuttgart group has recently succeeded in obtaining a
Bose-Einstein condensation of >2Cr atoms [19] which are
spin-three bosons. This was followed by theoretical work
[20,21] showing the possible types of phases that can be
realized for such a spin-three system.

Classification schemes of single-particle states with
nonzero spins are needed to describe both superfluid con-
densates and Mott insulating states of spinor bosonic
atoms. However, such classification becomes increasingly
more difficult for larger spins. For instance, classifying the
state of a spin-half particle is straightforward; only knowl-
edge of the expectation value of the spin operator (F) is
needed. On the other hand, for a spin-one particle, knowl-
edge of the expectation value of the nematic tensor familiar
from the classical theory of liquid crystals [22]
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in addition to (F) is required. Proceeding along these lines,
one finds that for larger spin such a classification scheme
becomes quite cumbersome since one needs to consider
order parameters that involve higher-order products of spin
operators, and a physical interpretation is not immediate.
In this Letter, we present an alternative classification
scheme which will work well for large spin. This scheme
allows the symmetries of a general spin F particle to be
represented by a polyhedron with 2F vertices. To illustrate
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the method, we use it to discuss spin-two bosons which are
naturally realized as a hyperfine state of alkali atoms. The
previously discussed superfluid ferromagnetic, polar, and
cyclic condensates [15,16] are shown to have the trans-
formation properties of a ferromagnet, a nematic (either
uniaxial or biaxial), and a tetrahedron. In addition, we
show that the nematic phase has an additional degeneracy
at the mean-field level. We then show that states having
similar transformation properties will be obtained in the
Mott insulating state. Next, we show that the classification
scheme immediately gives the number of Goldstone modes
and allows one to classify topological excitations. In fact,
in the biaxial nematic phase and the tetrahedratic phase, the
topological excitations combine according to non-Abelian
groups [23]. Finally, due to recent experimental interest,
we will also discuss classification of spin-three bosons.

We will now outline our general classification scheme
for a single spin. The key ingredient of our classification
scheme is identifying states of spin F particles with 2F
points on the unit sphere [24]. Consider a particle of spin F
in the state given by ) = YF__ . A, |a), where F.|a) =
ala) and A, are a set of normalized complex coefficients.
To gain a physical understanding of this state, the idea is to
find the set of ‘“maximally polarized” states which are
orthogonal to |¢). The maximally polarized state |{) point-
ing in the i = (0, ¢) direction is determined by the equa-
tion F-h|l)= F|{). A convenient (not normalized)
representation of this state (which is related to the
Schwinger boson representation) is

2F
2F
=3 (% )e1F - @
a=0
where ¢ = ¢’ tan(#/2) is the stereographic mapping of

the unit sphere to the complex plane. We define the char-
acteristic polynomial for [¢) in { to be

2F
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The values of the 2F complex roots of f({), {{} =
{¢: f,() = 0}, (which are in one-to-one correspondence
with a set of points on the unit sphere {(0;, ¢;)}) determine
the coefficients A, and therefore |¢) up to normalization
and an overall phase factor. Most importantly, the symme-
tries of |¢) correspond to the operations under which the
set of points on the unit sphere {(6;, ¢;)} are invariant. A
similar method has been developed in the 19th century
mathematics community to solve quintic polynomials in
terms of rotations of regular icosahedra [25].

We illustrate our general approach by considering a
specific problem of spin-two bosons, first concentrating
on the Bose-Einstein condensation (BEC) state in a single
optical trap and then extending the discussion to the insu-
lating Mott state in an optical lattice. Spin-two bosons
interact with the contact potential

Vin(X1 — X3) = 8(x1 — x3)(g0 Py + 2P + 84Ps), (4)

where P projects into the state with total spin F and g =
27rar/m where ay is the scattering length corresponding
to spin F. Note the requirement that the wave functions be
symmetric under interchange of particles prohibits odd
spin projection operators. In the superfluid phase when
all atoms occupy the same orbital state, potential (4) leads
to the interaction Hamiltonian [15-17] of

1
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where U, = % (4a, + 3ay), U, =% (Tay — 10a, + 3ay),
and U, =%(ay —ay) (y is a positive constant). In
Eq. (5) n= azr,aa (here and after sums over repeated
indices are implied), where al, creates a spin-two boson
in an eigenstate of F, having eigenvalue «. Finally, F? =
F-F, where F = alTaﬁaﬂ and T,pz are the spin-two
matrices.

The mean-field description for a BEC of N bosons is
lihgp) = \/LN—!(AaaIY)N |0), where the normalized complex

coefficients A, are the variational parameters. Since the
kinetic energy of the system will not depend on the spin
degrees of freedom, it is sufficient to minimize
(sl H 1| hsE) over the variational parameters. To leading
order in N, we find with this wave function

1
(Hp)/N? = 0 U 124,A_) — 2A1A_; + AgA,l?
1 1
+ 3 Up + 3 Up(A5TopAp)*. (6)

Carrying out the minimization with the constraint of nor-
malization, ALA, = 1, we find the phase diagram given in
Fig. 1 where the boundaries are given by a, — ay =
+ & (ag — a4) and a; = a,. The phases correspond to the
coefficients (A_,, A_{, Ag, Ay, A,) given by

F:(1,0,0,0,0, N (Sin(ﬂ), 0, cos(m). 0, sin(n)>’

V2 V2
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which are uniquely determined up to SO(3) spin rotations
by the minimization. Phase N has the additional degen-
eracy parameter 1 which does not correspond to a sym-
metry of the Hamiltonian. One should note, however, that
this degeneracy only arises at the mean-field level and will
be removed when we include corrections to the mean-field
wave function [26]. On the other hand, in real experiments,
the quadratic Zeeman effect provides another way of re-
moving this degeneracy which we will discuss. Using the
scattering lengths taken from Ref. [15] we also indicate
where ’Na and 3’Rb will lie in the phase diagram. The
same phase boundaries were found by Ciobanu, Yip, and
Ho [15] for the superfluid phase. However, we emphasize
that there is a continuous degeneracy in the phase N at the
mean-field level.

Symmetries of the phases given by the wave functions in
Eq. (7) is not immediate upon first glance. We will now
illustrate the utility of our method by classifying the vari-
ous phases. For spin two, the maximally polarized state as
in Eq. (2) is

12y = &4 —2) + 23] — 1) + V62|0) + 2£[1) + [2).
(8)

Phase 'F is clearly the ferromagnetic state. However, it will
prove instructive to proceed with our systematic classifi-
cation scheme. The characteristic polynomial Eq. (3) for
this case is simply f,,.({) = /* which has the fourfold
degenerate root of { = 0 which corresponds to the north
pole of the unit sphere (6, ¢) = (0, 0). The only symme-
tries this state possesses are therefore the U(1) group of
continuous rotations about the z axis.
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FIG. 1 (color online). Phase diagram for spin-two bosons in a
single optical trap. The axes are in units of ap. For the Mott
insulating state with one boson per site, the phase diagram will
be the same with the horizontal and vertical axes corresponding
to €y — €4 and €, — €4, respectively [see Eq. (12)].
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We now move on to phase JN. Before applying our
classification method, it is first useful to consider the order
parameters constructed in the conventional way. First, we
note that (F) = 0. Next the eigenvalues of the nematic
order parameter Eq. (1) are

—2cos(27m)
Eig (Qu) = <COS(2n) + /3 sin(27) ) ©))
cos(2m) — /3sin(27)

Now, applying our method, the characteristic polynomial is

Fun ()= \gsin(n)f“ ++/6cos(n) > + \gsin(n)- (10)

The roots of this equation all lie at the vertices of a
rectangle. For 0<n<w/3, w/3<n<2mw/3, and
27/3 < m < 7 the rectangle will lie in the zy, xy, and xz
planes, respectively. We find that 5 = nr/3 (defined N'1)
corresponds to two sets of double roots at opposite poles.
This state will have the transformation properties of a
uniaxial nematic. That is, there is the symmetry of con-
tinuous rotation about the nematic axis. There are also the
additional symmetries of discrete rotations by 7 about any
axis in the plane perpendicular to the nematic axis. On the
other hand, when n = (n + 1/2)7/3 (defined IN2) the
roots lie at the vertices of a square which has no continuous
symmetries (contrary to what one might be led to believe
from Q). The symmetries here are rotations by /2
about the nematic axis and rotations by 7 about the other
two principal axes. For all other values of 7 the nematic
will be biaxial, which we refer to as phase JN'3. This case
has the fewest symmetry operations, the rotations by 7
about the three principal axes.

A route to remove the mean-field degeneracy associated
with 7 is to apply an external magnetic field. Since for
typical experiments the time it takes a spin state to relax is
longer than the trap lifetime [2], it is appropriate to think of
(F,) as a conserved quantity, and the linear Zeeman term is
unimportant. Thus, the most important effect due to an
external magnetic field is due to the quadratic Zeeman term
(proportional to F2) which can either have a positive or
negative coefficient. In the (most common) event that the
coefficient is negative, the phase N2 which transforms as
the square will be favored. On the other hand, if the
coefficient is positive, the N'1 phase will be favored.

We now consider the remaining region in the phase
diagram, phase T, which, as we will see, is tetrahedrati-
cally ordered. For this case, Q,, gives no useful informa-
tion since (Q,;,) = 0 as well as (F) = 0. Thus, the utility of
our classification method will be demonstrated most
clearly here. The characteristic polynomial for this situ-

ation is fy, () = |[3¢* + 2 27 The roots of this equation
correspond to the points {(6;, &;)} = {(0,0), (6, 7/3),
(0, ), (6, 57/3)}, where 6 = 2tan~'(+/2). These points
lie at the vertices of a regular tetrahedron on the unit

sphere. Thus |¢/1) has the full symmetry of the point group
of the tetrahedron.

We will now consider what happens when the spin-
two bosons are in an optical lattice in a Mott insulat-
ing state (one per site). Such a system will be described
by the Hamiltonian H = H , + H gy, where H y;, =
=Y j>(a;raaja + H.c.) describes hopping between adja-
cent sites and JH 13, gives the on-site interaction

1 1 1
H i = 5 Upni(n; — 1) + EUI Py + EUz(F% — 6m;).

2
a1

Note the similarity between the on-site interaction and
Eq. (5). When the sites are completely decoupled, the
ground state energy will be independent of the spin state
of any given site leading to a macroscopic degeneracy
which will be removed by hopping. Treating the hopping
perturbatively, we arrive at the effective Hamiltonian

H o = D [ePolij) + &P5(ij) + &Py(ij)]  (12)
(ij)

which acts in the subspace of singly occupied sites. Here,
Pr(ij) projects neighboring sites at i into a state with total
spin total spin F and €, = ﬁ’féw, € = UO%{U? and
4 = Uo%flfz‘ This effective Hamiltonian is valid in the
limit J < U,. We point out that HH ¢ can also be written
in terms of powers up to four of spin operators on adjacent
sites S; - S;, but we find the representation in Eq. (12)
easier to work with.

When all of the scattering lengths are equal, we will
have for the on-site parameters U; = U, = 0, which will
make €, = €, = €4. This corresponds to the situation
where the Hamiltonian (12) has a special SU(5) symmetry.
For this situation, the state with all sites having the same
spin wave function |¢yy) = [];A.l@); will be an exact
eigenstate of JH ., which is the ground state. There will
still be a rather large degeneracy for this situation since the
ground state energy will not depend on the coefficients A,,.
On the other hand, when the scattering lengths begin to
differ this degeneracy will be partially lifted. We will now
determine the phase diagram using the variational wave
function. By evaluating (| H .|1/) and minimizing over
the set of five complex coefficients A, we find precisely the
same coefficients as in (7). Moreover, the phase diagram
for this case will be identical with that given in Fig. 1 with
the axes changed to ag, — a4 — €y, — €4.

At the level of virtual hopping Eq. (12) in perturbation
theory (second order in J/U), the states in phase N are
degenerate with respect to the parameter 7. However, this
does not correspond to a true symmetry of the parent
Hamiltonian. One therefore expects that this degeneracy
will be removed at the ring exchange level in perturbation
theory (fourth order in J/U). On the other hand, quantum
fluctuations at the virtual hopping level from JH . may
favor particular phases which can be of the same order as
ring exchange. The detailed treatment of this problem is

€
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FIG. 2 (color online). Some possible phases that can be real-
ized for a spin-three system either in the superfluid or Mott
insulating states. Shown are the coefficients of the wave func-
tions A, and the shapes representing the symmetries of the wave
functions. The phases transform as the following polyhedra:
(a) the hexagon, (b) the pyramid with pentagonal base, (c) the
prism, and (d) the octahedron. For phase (c) we have the
condition tan?(n) < 10. Additional phases similar to the spin-
two case (not shown) are the ferromagnetic and nematic states.

beyond the scope of the present work and will be consid-
ered elsewhere [26].

Knowing the symmetry properties of the wave function
leads to a natural classification of the collective excitations
of the system. Breaking continuous symmetries leads to
Goldstone bosons; the number of such modes corresponds
to the number of broken symmetry generators. Our
Hamiltonians will always have an SO(3) symmetry which
corresponds to global spin rotations [at the point where all
the scattering lengths are the same there will be a special
SU(5) symmetry]. As can be seen in the pictorial repre-
sentation, the uniaxial nematic phase N1 has one remain-
ing continuous symmetry and thus break two of the
generators of SO(3). This state will therefore have two
Goldstone bosons. The biaxial nematic phases N2 and
N3, and tetrahedratic phase 7 all have no remaining
continuous symmetries, so these will have three
Goldstone modes. The topological excitations out of the
various phases can also be classified using the homotopy
theory. The fundamental group describes how different
defects combine. For instance, it is known that the funda-
mental group of the biaxial nematic N3 is the (non-
Abelian) quaternion group [23]. The phase N2 (trans-
forming as the square) has the larger 16-element dicyclic
group [27] for its fundamental group, giving it more types
of topological excitations. Finally, the fundamental group
of the tetrahedratic state is the binary tetrahedral group
with 24 elements [27]. The number of topological excita-
tions (4, 6, and 6, respectively) is the number of nontrivial
conjugacy classes in each of these groups.

We now will briefly comment on the types of states one
can expect for the spin-three problem motivated by recent

interest [19-21]. A similar variational wave function ap-
proach for either the superfluid or Mott insulating states as
done above can be used for the spin-three case. The char-
acteristic polynomial f,() will have six roots (instead of
four as in the spin-two case). Possible phases that can be
realized for such a system are shown in Fig. 2. The
boundaries between these phases can be found in [20,21];
the purpose here is to show that our classification scheme
can be applied naturally to the spin-three system.

In conclusion, we have presented a classification scheme
for cold spinor bosons. We considered spin-two bosons as
an illustrative example, which can be realized as a hyper-
fine state of an alkali atom. In addition to the ferromagnetic
and nematic states, we showed that a tetrahedratic ordering
can occur for this system. Finally, we discussed an exten-
sion to spin-three bosons.
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