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Quantized vortex-core structure is theoretically investigated in fermion superfluids with population
imbalance for two atom species of neutral atom clouds near a Feshbach resonance. In contrast with the
vortex core in balance case where the quantum depletion makes a vortex visible through the density profile
measurement, the vortex core is filled in and becomes less visible because the quantized discrete bound
states are occupied exclusively by the majority species. Yet it is shown that the core can be visible through
the minority density profile experiment using phase contrast imaging, revealing an interesting opportunity
to examine low-lying fermionic core bound states unexplored so far.
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There has been much attention focused on fermionic
superfluids of cold atoms such as 6Li or 40K since experi-
mental realization [1]. The experiments utilize the
Feshbach resonance by changing an external field to tune
the atom-atom interaction, achieving the Bose-Einstein
condensation (BEC)-BCS crossover. Keen interest is now
placed on fermion superfluidity when the population of the
two species (up and down ‘‘spins’’) is unequal experimen-
tally [2–5] and theoretically [6,7]. Zwierlein et al. [2,3]
have succeeded in creating vortices not only in the balance
case with equal population but also in the imbalance case,
directly demonstrating its superfluidity. Here the presence
or absence of vortices in a system is utilized to monitor
superfluidity because a quantized vortex is a hallmark of
superfluidity. They have observed the clear signature of
vortices in the inner region of the density after sweeping
into the BEC side, even in the imbalance case of the BCS
side. However, it is important to notice that whether the
superfluidity in the outer region is robust or not is still open
to question. In this Letter, we focus on the visibility of the
vortex core situated at the trap center in the imbalance
case. In addition, we discuss the visibility of vortices in the
outer region from the results. This result is quite contrasted
in the BEC case where vortices are remarkably arranged
regularly throughout the whole system, even near the
boundary with lower density [8].
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�BCS / hc

y
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y
�k#i in BCS. Thus, it is not self-evident

even in the 50%-50% balance case that the vortex, which
is probed by the density contrast, continues to be ‘‘seen’’
from BEC to BCS across the Feshbach resonance point. A
theoretical question here is to understand the peculiar
vortex-core structure in the imbalance case, related to the
quantum depletion of the density at the core [9,10]. We
provide a microscopic calculation for it, fully taking ac-
count of low-lying fermionic excitations around a core
beyond the simple local density approximation. These
individual excitations are essential in fermion superfluid,

a feature completely absent in the vortex state in a boson
superfluid.

This study might be useful for other research fields such
as the condensed matter community, because superconduc-
tors with imbalance up and down spin electrons are real-
ized by an applied field through the Zeeman effect. Thus,
there is a good chance to check the present study. Indeed, in
a heavy fermion material CeCoIn5 the ‘‘imbalance’’ super-
conductivity may be realized under high fields where the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is ob-
served [11]. Also, in high temperature superconductors,
the so-called ‘‘vortex charging’’ problem where the quasi-
particle density is suppressed at the core is observed by the
nuclear quadrupole resonance experiment [12].

Before going into a detailed calculation in the imbalance
case, we recapture the results in the balance case; the core
structure in both superconductors and superfluids is studied
in the balance case [9,10]. They show that, by increasing
the coupling constant of attractive interaction, the particle
number at the core decreases due to quantum depletion.
This is caused by the fact that the vortex-core bound states,
namely, Caroli-de Gennes-Matricon (CdGM) states [13],
with finite amplitude at the vortex center are unoccupied by
discretization [9,10]. It should be noted, however, that
there is no experiment to directly detect the CdGM state
in condensed matter physics so far. Here we show through
this study that there is a good chance to directly see it.

To address such a problem, we self-consistently solve
the Bogoliubov-de Gennes (BdG) equation describing the
interacting fermion system with population imbalance
under a trap V�r�. This framework is one of the most
fundamental microscopic theories. We start with the BdG
equation for the quasiparticle wave functions uq�r� and
vq�r� labeled by the quantum number q as follows [14,15]:
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where K";#�r� � ��r2
r=2M� � V�r� � gn#;"�r� ��";#. We

fully take account of the mismatched Fermi surfaces as
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�� � ��" ��#�=2 and the local Hartree potential
gn��r�, with n"�r� �

P
qjuq�r�j2f�Eq� and n#�r� �P

qjvq�r�j2�1� f�Eq�	. While the eigenstates and eigen-
value of Eq. (1) are often written as �uq0;"; vq0;"�; Eq0;" and
��v�q0;#; u

�
q0;#�;�Eq0;#, we express these states as

�uq; vq�; Eq. The bare attractive interaction g � 4�a=M
via the scattering length a. Throughout this Letter, we set
@ � 1 and consider a cylindrical system with V�r� �
1
2M!

2r2, imposing a periodic boundary condition with
the periodicity Z � 3d (d�1 �

���������
M!
p

) along the z direc-
tion. Hence, we write the wave functions as uq�r� �
uq�r� exp�i�‘� 1

2��� iqzz	 and vq�r� � vq�r�

exp�i�‘� 1

2��� iqzz	, with qz � 0;�2�=Z;�4�=Z; � � �
for a single vortex. The BdG matrix in Eq. (1) is numeri-
cally solved by spatial discretization with respect to the r
axis, whose step is 0:01d. The self-consistent gap equation
for ��r� � e�i���r� is

 ��r� � ~g�r�
X

jEqjEc

uq�r�v
�
q�r�f�Eq�; (2)

where the effective coupling constant ~g�r� is introduced in
order to remove the ultraviolet divergence [16,17]. Since
we use the expression valid even for broken particle-hole
symmetry, the sum in Eq. (2) is done for all of the eigen-
states with both positive and negative eigenenergies up to
the energy cutoff �Ec � 200! [14]. In the BdG equa-
tion (1), the chemical potential is adjusted to fix the total
particle number N � N" � N# � 3000. Here we shall
present the self-consistent results for the bare coupling
constant g=!d3 � �1:1, �1:2, �1:3, �1:4, and �1:5,
corresponding to �1:4  �kFa�

�1  �0:7 with the
Fermi wave number kF. These are also expressed as
�0�0�=EF�0� � 0:15, 0.20, 0.23, 0.27, and 0.32 in the
vortex-free state, respectively. The gap �0�0� [EF�0�] is
��r� [the Fermi energy EF] at the trap center without a
vortex in the population balance case. The polarization P is
defined by P � �N" � N#�=�N" � N#�. In this Letter, we
consider only the T � 0 case and neglect the external
rotation energy.

We show the spatial profiles of the order parameter ��r�
in Fig. 1. The vortex structure for the population imbalance
corresponds to curve (1). It is seen that the vortex-core size
is wide compared with that for the balance case (2).
Towards the outer region, ��r� oscillates and changes its
sign several times to accommodate the excess majority
component. This FFLO-like state is always stabilized irre-
spective of the values of finite P at T � 0 as shown
previously [6]. Therefore, for P � 0 at T � 0 in the vortex
solution ��r� changes its sign and oscillates. As shown in
the inset, which displays j��r�j for curve (1) in a logarith-
mic scale to examine the detailed variation of the outer
region, the oscillation pattern continues rather regularly to
smaller scales of �. This means that superfluidity is kept
coherently throughout the whole system, even at the sys-
tem edge where j�j is extremely small and the minority

component is almost absent (see Fig. 2). Therefore, the
present solution for the imbalance case is quite different
from a simple BCS-normal phase separation in the local
density approximation. This is consistent with that in our
previous solution for the vortex-free case [6] and with the
work by Kinnunen et al. [7].

In Fig. 2, we show the density profiles: the total n�r�, the
majority n"�r� and minority n#�r� components, and the
magnetization m�r� � n"�r� � n#�r� for the solution corre-
sponding to curve (1) in Fig. 1. It is seen that the majority
component exclusively occupies the central region, while
the minority component remains depleted. It should be
noted that the quantum depletion of the total number n�r�
at T � 0 is substantially smaller and incomplete compared
with the balance case as seen shortly in Fig. 4. The mag-
netization shows a peak at the vortex center. In the inter-
mediate region 0:5  r=d  2:5, the magnetization is
almost vanishing, resulting in the enhancement of n#�r�.
This leads to the ‘‘bimodal’’ structure of n#�r�, which is
observed experimentally in the vortex-free cases [2,3].

FIG. 1 (color online). Order parameter profiles j��r�j as a
function of r=d for g=!d3 � �1:5. (1) Vortex with population
imbalance case P � 0:3. (2) Vortex with population balance case
P � 0. (3) Vortex free with population balance case P � 0.
Logarithmic plot of (1) is shown in the inset to emphasize the
finer scale of j��r�j in the outer region.

FIG. 2 (color online). Density and polarization profiles as a
function of r=d corresponding to curve (1) (P � 0:3; g=!d3 �
�1:5) in Fig. 1. n�r� � n"�r� � n#�r�: total density; n"�r� [n#�r�]:
up [down] spin density; and m�r�: magnetization.
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This bimodal structure is confirmed by our previous cal-
culation in the vortex-free case [6]. In the outer region r �
5d in Fig. 2, there exists only the majority component
n"�r�, and the magnetization is fully polarized there.

In Fig. 3, we show density plots for n"�r�, n#�r�, and n�r�
of Fig. 2 where the vortex core is located at the center. The
contrast in n#�r� and n�r� is clearer than that of n"�r�, which
is dim. Namely, in the imbalance vortex, the minority
[majority] component is visible as in Fig. 3(b) [invisible
as in Fig. 3(a)]. We also show the density plot of n�r� for
the balance case for comparison in Fig. 3(d). It is seen that
the contrast of the balance case is clearer compared with
that for the imbalance case in Fig. 3(c). This is because the
quantum depletion of n�r� occurs at the core for both n"�r�
and n#�r�. These results in Fig. 3 are checked experimen-
tally by a direct ‘‘in situ’’ method [3,4] without resorting to
BEC mapping from the BCS side, combined with phase
contrast imaging [4]. When the BEC mapping is used [2],
the density contrast of vortices may be modified. We note
in passing that the BEC case n�r� � 0 at the vortex center,
because n�r� is the order parameter, and at the vortex center
n�0� must vanish because of the presence of the phase
singularity due to phase winding.

The polarization P dependence of the total density pro-
files is displayed in Fig. 4. In the balance case (P � 0),
substantial quantum depletion at the vortex core is seen. As
P increases, the core density is progressively filled out and
the vortex filling becomes complete; thus, the vortex tends
to be ‘‘invisible’’ in the density contrast experiment. The
core radius defined at the density maximum point from the
trap center increases with increasing P, then the ‘‘core
size’’ expands.

The inset in Fig. 4 shows the P dependence of the core
filling factor F � n�0�=nmax defined by the density ratio
between the density n�0� at the core center and the maxi-
mum density nmax. It demonstrates how visibility becomes
lower with P. Because of the quantum depletion at the
core, which is proportional to �0�0�=EF [9], the filling
factor F becomes smaller as the strength of the attractive
interaction jgj increases, i.e., approaching the Feshbach
resonance point. The density contrast quickly diminishes
with P, implying that the vortex becomes invisible with P
for general g. As seen from the inset in Fig. 4, the filling
factor F as a function of P changes in a steplike manner,
particularly for larger jgj. This comes from the fact that the
vortex bound states are discretized. Thus, as P varies, the
occupation of these quantized states is progressively
changed, leading to the steplike variation of the occupation
number.

These results might be relevant for the interpretation of
the vortex experiment in the imbalance case, especially
around the outer region. In the actual experiment, the
vortex visibility is influenced by the formation of FFLO
as follows: (i) In the outer region, FFLO pairing survives
with small amplitude, and (ii) it is also always accompa-
nied by a large amount of polarization. By these effects,
vortices around the outer region in the FFLO state can be
invisible. The vortices at the center [outer] region corre-
spond to the present single-vortex study for smaller [larger]
P. Hence, we expect a general tendency that in the imbal-
ance case the vortices in the center [outer] region are
visible [invisible].

In order to understand why the total number n�r�, in
particular, the majority species n"�r�, fills out the core re-
gion, we examine the local density of states with qz � 0,
namely, N"�r; E� �

P
qjuq�r�j2��E� Eq� and N#�r; E� �P

qjvq�r�j2��E� Eq�. The spectral evolution of N"�r; E�
for the majority species near the Fermi level EF and the
corresponding density plot are displayed, respectively, in
Figs. 5(a) and 5(b). It is seen clearly from Fig. 5(a) that

FIG. 3. Density maps of (a) n"�r�, (b) n#�r�, and (c) n�r�,
corresponding to Fig. 2. (d) n�r� for P � 0 and g=!d3 �
�1:5. By comparing (c) the imbalance case and (d) the balance
case, the core in (d) is clearly seen as a small but sharp dot at the
center. The field of view is 14:0
 14:0 in units of d.

FIG. 4 (color online). Density profiles of the total number n�r�
for various polarizations: P � 0, 0.11, 0.35, 0.43, and 0.52 from
top to bottom. The inset shows the filling factor F � n�0�=nmax

defined by the ratio between the maximum value nmax and n�r �
0� for various couplings (g=!d3 � �1:5,�1:4,�1:3,�1:2, and
�1:1 from bottom to top).
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near the vortex core r � 0, and at the lower energy region
around E � 0, a series of the core CdGM bound states
[13], i.e., more broadly, the Andreev bound states, are
located, whose angular momentum is characterized by
half-integers ‘ � � 1

2 ;�
3
2 ; � � � . At the core center r � 0,

only the CdGM bound state labeled by ‘ � 1
2 with a

positive energy has spectral amplitude and the others
have no spectral weight at r � 0 [9]. This bound state is
unoccupied when P � 0. Since for P � 0 it is occupied
because of the upward Fermi level shift, the majority
species n"�r � 0� becomes able to fill in the core. For the
minority species, this state is unoccupied; thus, n#�r� re-
mains suppressed at the core. Since the high angular mo-
mentum states with l � 3=2; 5=2; � � � are progressively
occupied for the majority species, n"�r� further increases
near the core. Beyond a certain P value, which depends on
the coupling constant, the depletion of the core becomes
absent and the core filling is complete (see inset in Fig. 4).

We should notice from Fig. 5(a) that each CdGM bound
state is split and has the double peak structure. This can be
understood as follows: We show the spectral density map
of N"�r; E� together with the order parameter profile���r�
in Fig. 5(b). At the node (r=d � 3:0) where ��r� � 0, there
appear the zero-energy bound states, i.e., the so-called
midgap state associated with FFLO. This midgap state
accompanies several excited states around the node be-
cause quasiparticles feel a local confining potential created
by the nodes of j��r�j [18]. Although these Andreev bound
states are localized around the nodes, they can resonate
with the CdGM state with ‘ � 1

2 bounded by the vortex if
these energies match each other. Other CdGM states with
higher angular momentum may also resonate with the
surface harmonic states which are originally localized at
the surface. These new ‘‘split’’ bound states further en-
hance the n" occupation and the magnetization around the
vortex core. Physically, this enhancement is reasonable,
because these newly created resonant bound states are
advantageous in view of the potential energy gain at the
center.

In summary, we have shown by solving the microscopic
BdG equation self-consistently that the vortex core in
fermion superfluids tends to be filled in by the majority

species when the population of the two species is imbal-
anced. It makes the vortex-core image unclear via the
density profile measurement. The vortex core can still be
visible through the selective measurement of the minority
density, using phase contrast imaging. We have given its
physical reasons in terms of the Caroli-de Gennes-
Matricon bound states. These predictions can be checked
experimentally by the direct in situ method [3,4] without
resorting to BEC mapping [2] from the BCS side, com-
bined with newly developed phase contrast imaging [4].
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FIG. 5 (color online). Spectral evolu-
tions for the majority species (up-spin
atoms) N"�r; E� with qz � 0. (a) Stereo-
graphic view and (b) density map. P �
0:3 and g=!d3 � �1:5. The labels show
the angular momentum l for each CdGM
bound state. In (b), the order parameter
���r� is overlaid. Energy is normalized
by the harmonic frequency !. EF is the
Fermi level position.
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