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We dynamically analyze our experimental results on the motion sensitive spiking H1 neuron of the fly’s
visual system. We find that the fly uses an alphabet composed of a few letters to encode the information
contained in the stimulus. The alphabet dynamics is multifractal both with and without stimulus, though
the multifractality increases with the stimulus entropy. This is in sharp contrast to models generating
independent spike intervals, whose dynamics is monofractal.
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The conflicting demands of variability and reliability
require neurons of, e.g., the sensory system to judiciously
adapt their dynamics to the statistics of the stimulus [1]. If
a spiking neuron has to encode relevant features of the
stimulus, it has to fire precisely timed spikes depending on
the presynaptic input generated by the instantaneous stim-
uli the organism receives. In this Letter, we present experi-
mental results on the fly visual system that strongly suggest
that this encoding takes place on multilayered sets, a
characteristic of the complex nature of this system. These
sets are defined in terms of symbolic sequences of letters,
selected from an alphabet according to the size of spike-
time intervals. Furthermore, we present strong evidence
that the underlying dynamics (UD) on each layer is multi-
fractal, suggesting thus the possibility for a chaoticlike
type of encoding. Already in the nonstimulus regime,
because of the multifractal dynamics, the UD is highly
flexible, ready to adapt its dynamics to the statistical
properties of the stimulus to be encoded. Then, in the
presence of the stimulus, finely tuned spike times ride on
a set whose UD has now an increased multifractality,
shaped by the properties of the stimulus.

Multifractal analyses of neural activity have been per-
formed by some authors [2,3], using real brain data:
Bershadsky et al. [2] use multifractality to analyze long
term correlations in a particular region of anesthetized rats,
whereas Zheng et al. [3] envisage its use as a neurosurgical
tool. Silchenko and Hu [4] study the effect of stochastic
resonance in an artificial noisy bistable system. By con-
trast, we analyze neural sensory data by combining ele-
ments of information theory and methods of the theory of
dynamical systems. We use orders of magnitude more data
than could be obtained from mammalian brain studies to be
able to reveal the existence of a highly nontrivial dynamics.

We establish the underlying dynamical behavior of the
neural activity in a prominent example of a spiking neuron:
the H1 neuron. This neuron is located in the lobula plate of
the fly Chrysomya megacephala, and is mainly sensitive to
image motion associated with horizontal back-to-front
rotations around a vertical axis [5]. This neuron was stimu-

lated by a computer-controlled random, vertical bar pattern
with horizontal velocity v�t�, new frames being shown
every 2 ms [6]. In order to be minimally representative,
we selected four types of stimuli v�t�: S0 � no stimulus,
S1 � constant velocity, S2 � a stimulus generated by an
Ornstein-Uhlenbeck process with correlation time �c �
20 ms [7], and S3 � an uncorrelated Gaussian stimulus.

Such a spiking neuron generates a sequence of spike
times ti, i � 1; 2; 3; :::Ns, where Ns � 105 in our experi-
ments. All the information received is compressed into the
sequence of intervals �ti � ti�1 � ti. In order to extract
the UD, we classify all the possible intervals, depending on
their size, into a discrete set of cardinality N: �ti � d1,
d1 <�ti � d2, d2 <�ti � d3 etc., where dj, j �
1; 2; . . . ; N � 1, are a set of dividers, each index j generat-
ing one layer. Evidently, if we make this set large enough,
we recover the original intervals. The question is this: Can
we choose a reasonably small set of layers, without com-
promising the information contained in the original inter-
vals �ti and study their dynamics? In other words, what is
the size of the alphabet the fly’s H1 neuron uses to speak
postsynaptically?

We choose our dividers so as to minimize information
loss or maximize Shannon’s entropy [8]. For a given set of
N � 1 dividers, we convert the sequence of spike intervals
�ti into a sequence of words of length L composed of N
letters. Notice that an L-letter word may comprise a very
long time interval. Now count up all the different L-letter
words showing up in an experiment, get their probabilities
Pk, and compute the average entropy (per letter) of a word
of length L with N possible letters of the experimental
sequence H�L;N� � � 1

L

P
kPklog2�Pk�.

Figure 1(a) shows the entropy for L � 10 with only
one divider, for the four different data sets. The entropy
shows a maximum at �d1�S0�; d1�S1�; d1�S2�; d1�S3�	 �
�23; 6; 5; 5	 bins. We now construct a uniquely defined
generating [9] partition of our time intervals; i.e., our
alphabet has to be able to allow a one-to-one encoding of
all sequences of intervals. This will yield the partition with
N � 2
 2l � 2; 4; 8; . . . . In order to be generating, all the
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dividers of a particular layer Jmust already be contained in
the previous layers j � 1; 2; . . . ; J� 1. With this consis-
tency requirement in mind, we construct Table I in two
steps. First, maximizing the entropy H2�N � 2
 2l� for
N � 2; 4; 8; . . . , we get the respective dividers in Table I.
Second, we turn to the remaining values ofN, searching for
dividers satisfying our consistency condition. This is in-
deed possible, if we fix, e.g., the bold faced dividers and
perform a constrained maximization to obtain the remain-
ing ones. We obtain the entropy per letter H2�N �
3; 5; 6; 7; . . .�, which equals to within 5% the entropy ob-
tained with an unconstrained maximization, which yields

completely different dividers. We conclude that H2�N�, for
N � 2
 2l � 2; 4; 8; . . . , is a generating partition. Is it
unique? If we perform the same procedure for other parti-
tions, e.g., N � 3
 2l � 3; 6; 12; . . . , the first step yields
the same value for the unconstrained entropy maxima
H3�N � 3; 6; 12; . . .�. In the second step, to obtain the
remaining dividers, the constrained maximizations yield
smaller entropies H3�N � 2; 4; 5; 7; 8; . . .� by as much as
10% as compared to the unconstrained ones, as we show in
Fig. 2. Here,H3�N � 2�means the following: (i) maximize
H3�N � 3� to get �d0; d1	; (ii) maximize H3�N � 2�, using
either d0 or d1, whichever gives the larger entropy. The
only exception here is one point corresponding to N � 3.
The same is also true for other partitions, starting with
prime numbers 5 and 7, indicating thus that within errors
the binary partition is the only generating one.

Figure 1(c) shows that the number of letters needed to
maximize the entropy decreases with increasing word
length L, due to correlations manifesting themselves and
undersampling effects. Since these put a limit on the usable
size of the alphabet, we address the UD using just a few
letters. We notice, however, that even for N smaller than
Nmax, e.g., seven dividers for experiments S2 and S3, we
obtain essentially the information the original spike trains
convey about the stimulus [8]. Figure 3 shows the infor-
mation per letter IA for S2 [10], divided by the information
the original spike trains conveys about the stimulus, using
the dividers of Table I. That is, for N � 2; 3; 4; 5; . . . , we
use the dividers �5	, �3; 5	, �3; 5; 11	, �3; 4; 5; 11	; . . . .

Since we are going to extrapolate below to large L, we
focus on sequences of words of length L containing four
letters, using the best dividers of Table I. Only fine details
of our results depend on this choice.

We now encode each of these L-letter words in a one-to-
one map into a real number Wi, 0 � Wi � 1, whose fre-
quencies we count in order to compute their probabilities
pi. The structure of the space of sequences C�W� for a
given N may now be uncovered by computing the gener-
alized dimensions Dq [11,12]. These are logarithmic ratios
between the probabilities pi and their physical occupation
�, which in our space C is give by � � N�L. The index q
can be thought of as a filter: a larger q enhances this ratio

TABLE I. The best time dividers (rows 3, 4, etc.) in units of bins, which generate the entropies H2 for all data sets, considering
different number of letters N (second row). Since H�L � 1; N� � H�L > 1; N�, we calculate these dividers fixing L � 1.

S0 S1 S2 S3

N 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

d1 23 9 9 9 9 9 6 6 6 4 4 4 4 3 5 3 3 3 3 3 2 5 5 4 3 3 3 3
d2 23 23 23 23 14 9 10 6 6 6 5 4 5 5 4 4 4 3 9 5 4 4 4 4
d3 49 49 34 23 14 10 10 8 6 5 11 5 5 5 4 9 5 5 5 5
d4 71 49 34 23 15 10 8 6 11 11 7 5 9 9 6 6
d5 71 49 34 15 10 8 34 11 7 21 9 7
d6 71 49 15 10 34 11 21 9
d7 71 15 34 21
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FIG. 1 (color online). (a) Entropy vs divider for a two-letter
code, for the four data sets: S0, S1, S2, S3. The entropy maximum
gives the best divider d1. (b) Word entropy (Hmax�L;N� 
 L) vs
the length of words L for the data S1. Note that for each N there
is a value of L for which the entropy reaches its maximum. We
refer to these N and L values as Nmax and Lmax. Each curve
corresponds to a different number of letters. (c) Scaling law that
relates Nmax with Lmax for which the maximum of the entropy is
achieved, for all the data sets.
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for large probabilities, whereas a negative one emphasizes
the smaller probabilities:

 Dq � lim
L!1

��
ln
�X

i

pqi

���
��1� q�L ln�N�	

�
: (1)

An equivalent quantity is f�, the Legendre transform of
�1� q�Dq. The index �measures the possible local fractal

dimensions [13] in our space C, occurring with singularity
strength f�. This is the global dimension of the set of
points that locally scales with singularity strength �.

They are given by � � d��q�1�Dq	

dq and f� � q�� �q�
1�Dq [14].

In Figs. 4(a) and 4(b) we show the spectra of the sym-
bolic sequences in C�W� with their error [14], which allow
us to draw the following conclusions. The H1 neuron has a
multifractal character, exhibiting the existence of an infi-
nite number of dimensions � with densities f�. This is in
sharp contrast to a memoryless, uncorrelated spike train
with a Poissonian or similar probability distribution. In
fact, any distribution with independent increments yields
a nontrivial f� for suboptimal dividers. Yet, since optimal
dividers can always be chosen to yield a uniform distribu-
tion, it is really monofractal for the optimal ones with
Dq � log2�N�. For example, for a Poissonian distribution
with N � 2, we set e�d1�Poisson�� � 1=2, where � is the
spike rate to obtain p0 � p1 � 1=2. Real spike trains by
contrast are multifractal even for the best dividers for all
types of stimuli. The fractal dimensions are roughly the
same for all the data sets, since D0 � f1 � 1. This means
that the neuron’s dynamics has continuous support on C,
the probability measure being distributed without ‘‘holes.’’
The spectra’s shape—f�min

� 0 and f�max
> 0 (except for

S3)—indicates that C has at least two scales and two main
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FIG. 4 (color online). f� spectra using Table I: (a) two letters
and (b) four letters. To avoid cluttering, we show only one-sided
error bars as dashed lines. Spectra analogous to (a) and (b), using
Eq. (2): (c) for two letters with bS0;S1;S2;S3

� �30; 1:55; 2:0; 1:44	
and (d) for four letters with bS0;S1;S2;S3

� �30; 1:45; 2:0; 1:2	. The
arrows indicate the end point �max of the curve for S0.

2 3 4 5 6 7 8
N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f:
 I

nf
or

m
at

io
n 

fr
ac

tio
n 

fo
r 

S 2

FIG. 3 (color online). Information per letter IA the alphabet
conveys about the stimulus for S2, divided by the average
information per spike IS: f � IA=IS. The computation of the
noise entropy HNoise, where IA � H�HNoise, introduces the
large error bars. Our data are extrapolations to L! 1 [8].
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FIG. 2 (color online). (a) Entropy per letter normalized by
log2�N� for all data sets. Circles represent the entropy
H2�N�=log2�N� and squares the entropy H3�N�=log2�N� for all
data sets. (b) Ratio of r � hH2i=hH3i, where h� � �i indicates the
average over S0; . . . ; S3.
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components: high probability sets—hot spots, localized in
small portions of the symbolic space C with density f�min

,
and another low probability set—cold spots, spread out
all over C with density f�max

. In the set associated with S0,
the number of cold spots very much dominates—
f�max

� �max � 1—the hot ones, implying one dominant
scale. For the other data sets, the scales are comparable.
Therefore, as the dynamics of the stimulus becomes faster
as we go from �c � 1 to �c � 0, the suppressed scale
emerges.

Given the f� spectra of our data, what is the simplest set
with this spectrum? To address this question, we construct
a probabilistic two-scale set with the following rule: an
interval of length unity is divided into b� 1 equal pieces,
such that one piece receives p0 of the original measure and
the remaining b receives bp1, with p0 � bp1 � 1.
Iterating this process self-similarly yields a set of dimen-
sions:

 Dq � �ln�p
q
0 � bp

q
1�	=��1� q� ln�1� b�	; (2)

with p0 � �1� b���min and p1 � �1� p0�=b, where b is
adjusted to produce the correct value for f�max

in Figs. 4(a)
and 4(b). The resulting f� spectra are shown in Figs. 4(c)
and 4(d). In Fig. 4(d), to reproduce the spectra for S3 in
Fig. 4(b), we make p0 � �1� b���max .

Notice that b jumps to lower values once a stimulus is
turned on. This means that for no stimulus the dynamics
distributes the measure rather uniformly into 31 equal
intervals, where 30 of them receive p1 of the measure
and 1 receives p0 with p0 >p1. At the rth iteration of
the set, 30 intervals will contain pr1 of the measure (cold
spots), 1 interval will contain pr0 of the measure (hot spots),
i.e., virtually all of the measure, and the rest will receive
combinations proportional to pr�k0 pk1, 0 � k � r. When
stimulated, the number of pieces drops dramatically to
�1, the hot spots approximately balancing the cold ones.
The stimuli thus reshape the probability landscape, which
becomes more and more structured as the stimulus entropy
increases.

In conclusion, the underlying dynamics for the H1 neu-
ron can be extracted by a finite-sized alphabet with about
four letters. Analyzing sequences written in this alphabet
allows us to exhibit the multifractal character of the se-
quence space. Here the stimulus shapes the landscape from
mainly uniform to highly structured as the stimuli become
increasingly dynamically variable. But this reshaping is
played out on different layers, which are dynamically
linked—a behavior typical of complex systems. The tools
developed here for the analysis of our data are of general
applicability. They reveal a fascinating complexity in the
dynamics of the fly’s visual system, even in the basic
aspects of the spike generating dynamics, and they provide
a means for their manipulation and control. It remains to be
seen whether the layered structure uncovered here has a

counterpart in the fly’s optical information processing
system.
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