
Statistically Enhanced Self-Attraction of Random Patterns

D. B. Lukatsky,* K. B. Zeldovich,* and E. I. Shakhnovich
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 4 July 2006; published 25 October 2006)

In this work we develop a theory of interaction of randomly patterned surfaces as a generic prototype
model of protein-protein interactions. The theory predicts that pairs of randomly superimposed identical
(homodimeric) random patterns have always twice as large magnitude of the energy fluctuations with
respect to their mutual orientation, as compared with pairs of different (heterodimeric) random patterns.
The amplitude of the energy fluctuations is proportional to the square of the average pattern density, to the
square of the amplitude of the potential and its characteristic length, and scales linearly with the area of
surfaces. The greater dispersion of interaction energies in the ensemble of homodimers implies that
strongly attractive complexes of random surfaces are much more likely to be homodimers, rather than
heterodimers. Our findings suggest a plausible physical reason for the anomalously high fraction of
homodimers observed in real protein interaction networks.
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Interaction of disordered surface patterns is a wide-
spread phenomenon in biological, and engineered soft
and biomaterial interface systems. Perhaps the most strik-
ing biological example of this phenomenon is the promis-
cuous interaction between proteins in a living cell—while
each protein has its designed interaction partners, it inter-
acts, however, with many more other promiscuous (un-
wanted) proteins. One important question is how such
promiscuous interactions are avoided to a degree necessary
for the maintaining the high specificity and selectivity of
protein-protein interactions. Another key open question of
molecular biology is whether evolution exploits protein
promiscuity in order to develop new functions from ini-
tially random interactions.

The general problem of interaction of random patterns
represents a first step towards the fundamental understand-
ing of the design principles of biomolecular recognition
from the first principles, using the bottom-up approach [1].
One such design principle was recently predicted in [2]. It
was predicted computationally [2] that the attractive inter-
action in pairs of identical random surfaces (we term such
self-interacting pairs of surfaces ‘‘homodimers’’) is statis-
tically stronger than the attraction in pairs of different
random surfaces of the same size (we term such pairs
‘‘heterodimers’’). By changing the mutual orientation of
the surfaces and looking for the lowest possible energy in a
given pair of surfaces, it was found that in homodimers the
average minimum energy of interaction between the sur-
faces is lower than in heterodimers [2]. The probability
distribution of the minimum energies of interaction in a
pair of surfaces is a type I (Gumbel) extreme value distri-
bution (EVD).

Here, we propose a theory that confirms the universal
nature of the effect observed in [2], and shows that the
energy fluctuations (with respect to mutual orientation of
the surfaces) in homodimers are exactly twice larger than
in heterodimers. This implies that the distribution of the

lowest interaction energies for homodimers is always
shifted towards the lower energies as compared with het-
erodimers. We provide the explicit expressions for the
energy fluctuations in both cases, and an estimate for the
average difference in the minimum energy between homo-
and heterodimers.

Our model consists of 2D disklike flat surfaces of radius
R and surface area A, whereupon N particles are placed; N
is assumed to be fixed (see Fig. 1). The average density of
particles is �0 � N=A, and for each surface the pattern is
quenched, so the particles are not allowed to move. The
particles interact with each other via a finite-range poten-
tial of magnitude U0 and range �. Only the intersurface
interactions are computed. To find the interaction energy E
in a pair of two different surfaces (heterodimer), we super-
impose the surfaces in a coplanar and coaxial configuration
at a separation h between the surfaces, h < �. The intersur-
face interaction energyE is then computed for every pair of

FIG. 1. (a) Model of two interacting proteins, where interact-
ing surfaces are flat disks of radius R with randomly placed
amino acids. (b) Snapshot of a random surface pattern.
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surfaces. The model for homodimers is analogous, except
for the fact that in this case we superimpose each surface
with the reflected image of itself. This superimposition
represents the correct analogy of real protein surfaces
forming a homodimeric interface.

For a given pair of surface patterns, the interaction
energy E depends on the relative rotation of the disks about
their common axis, and the distribution of the energies
within a given pair of disks also follows P�homo��E� or
P�hetero��E�. An orientation of the patterns corresponding
to the lowest energy roughly mimics the native state of a
protein complex. Therefore, the minimum energy of inter-
action Emin that can be achieved in a given pair of patterns
and its distributions P�homo�

min �E� and P�hetero�
min �E� are of a

particular interest. The distributions P�homo�
min �E� and

P�hetero�
min �E� are obtained from P�homo��E� and P�hetero��E�,

respectively, as the statistics of extreme order (extreme
value distributions) of length M� 2�R=� as within each
pair there are aboutM mutual orientations of the disks with
statistically independent values of energy.

We begin by calculating the properties of P�hetero��E� and
P�homo��E� for heterodimers and homodimers, respectively,
from which we shall later derive the corresponding ex-
treme value distributions P�hetero�

min �E� and P�homo�
min �E�.

The energy of interaction between two surfaces in a
heterodimer reads

 E �
Z
’1� ~�1�U� ~r1 � ~r2�’2� ~�2�d

2 ~�1d
2 ~�2; (1)

where ’1� ~�1� and ’2� ~�2� are the surface densities of
particles constituting the random patterns on the first and
second surface, respectively. The radius vectors are ~r1 �
� ~�1;�h=2� and ~r2 � � ~�2;�h=2�, with ~�1 � �x1; y1� and
~�2 � �x2; y2� being the 2D vectors on the first and second
surface, respectively. The integration in Eq. (1) is per-
formed with respect to the surface areas of both disks.
The interparticle interaction potential, U�~r1 � ~r2�, be-
tween two particles located at the point ~r1 on the first
surface and ~r2 on the second surface is assumed to be
pairwise additive, and it depends only on the distance
between the particles j~r1 � ~r2j. At this point we do not
make any other assumptions about U�r�.

The surface densities ’i� ~�� for each surface i � 1, 2 can
be represented as

 ’i� ~�� � �0 ��i� ~��; (2)

where �0 is the average surface density, and �i� ~�� is the
deviation (or fluctuation) of the local density from its
average value �0 at a given realization of random pattern
on surface i. Substituting Eq. (2) into Eq. (1), the energy E
can be represented as a sum, E � E0 � E1 � E2. Here, E0

is the average interaction energy, independent on the den-
sity fluctuations; the next contribution, E1, is linear in the
density fluctuations, �i� ~��, and the last contribution, E2, is
quadratic in the density fluctuations, �i� ~��. Our objective

is to find the average fluctuation of the interaction energy,
�2 � h�E� hEi�2i. The averaging here is performed with
respect to all possible realizations of the random density
fields �1� ~�� and �2� ~�� (see, e.g., [3] ):

 Pi�f�i� ~��g	 � Ce�
R
�2
i � ~��d

2 ~�=2�0 ; (3)

where the normalization constant C is determined from the
condition

R
D�P��	 � 1. Note that the average magni-

tude of the local density fluctuations of particles within the
area element �A, h�2

i � ~��i�A � �0 is entirely determined
by the average particle density �0. Therefore, �0 is a
measure of the fluctuations of the pattern density.

The average energy is easily found in the Fourier repre-
sentation by denoting

 �i� ~�� �
1

A

X
~q

�̂i� ~q�ei
~q ~�; (4)

where ~q is the 2D wave vector. It is straightforward to show
that the averages hE0i � E0 and hE1i � 0. The quadratic in
�i� ~�� term, E2, has the following form in the Fourier
representation:

 E2 �
1

A

X
~q

�̂1� ~q��̂2�� ~q�Û� ~q; h�; (5)

where

 Û� ~q; h� �
Z
U� ~r�ei ~q ~�d2 ~�: (6)

It is obvious now that the average fluctuational energy is
also vanishing, hE2i � 0, as �̂1� ~q� and �̂2� ~q� are indepen-
dent variables in the averaging procedure. It is also easy to
see that hE2

1i � 0 and hE1E2i � 0. The resulting fluctua-
tion�2 of the total energy E is thus determined by only one
term, hjE2j

2i:

 hjE2j
2i �

1

A2

X
~q

hj�̂1� ~q�j2ihj�̂2� ~q�j2ijÛ� ~q; h�j2: (7)

Performing the Gaussian integration in the Fourier space,
hj�̂i� ~q�j

2i � 2�0A, we finally obtain

 �2
hetero � hjE2j

2i � 4�2
0A
Z
jÛ� ~q; h�j2

d2 ~q

�2��2
; (8)

where we switched from the Fourier sum to the integral.
Thus, the probability distribution P�hetero��E� is the normal
distribution with the mean E0 and the dispersion given by
Eq. (8).

In the case of random homodimers, the particle density
pattern of the second surface is the mirror image of the first
one, and hence

 E2 �
Z
�� ~�1�U� ~r1 � ~r2���x2;�y2�d

2 ~�1d
2 ~�2: (9)

Here the reflection is performed with respect to the x axis;
the results are invariant with respect to the choice of the
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reflection axes. Again, the only relevant term for the energy
fluctuations is hjE2j

2i, while the average energy E0 is the
same as in heterodimers. Because of the reflection sym-
metry, the quadratic term in the energy of homodimers
reads

 E2 �
1

A

X
~q

�̂� ~q�2Û� ~q; h�; (10)

that gives straightforwardly hE2i � 0. The energy fluctua-
tion in homodimers is thus

 �2
homo �

1

A2

X
~q

hj�̂� ~q�j4ijÛ� ~q; h�j2; (11)

and performing the Gaussian averaging, we obtain

 �2
homo � 8�2

0A
Z
jÛ� ~q; h�j2

d2 ~q

�2��2
: (12)

The key result here is that the energy fluctuation for
random homodimers is twice as large as the corresponding
energy fluctuation for random heterodimers:

 �2
homo=�

2
hetero � 2: (13)

This property is universal; it is independent of the type of
the interaction potential U and of the density of particles.

We can estimate how the strength of the energy fluctua-
tions depends on the characteristic radius of the potential.
We shall choose U�r� to have a Gaussian form, U�r� �
U0 exp��r2=�2�, where � is the characteristic length of the
potential and r2 � �2 � h2. The larger is �, the longer is
the range of the potential, and the stronger thus are the
correlations between the particles. Practically, the charac-
teristic length of the potential, �, is restricted from below
by the size of the particle, d0 (the hard-core size). The most
interesting case corresponds to the situation when �
 h;
this limit corresponds to the strongest effect, when each
particle on one surface can make many contacts with
particles on the other surface. Performing the Fourier trans-
form of the potential, and taking this limit of a long-range
potential, we obtain that for both random homo- and
heterodimers the fluctuation of the energy scales as:

 �2 �U2
0�

2
0�

2A: (14)

The magnitude of the fluctuation is determined by the
amplitude of the interparticle potential and by its character-
istic length. The fluctuation is proportional to the total
surface area, and to the square of the average density of
particles constituting random patterns.

Knowing the distributions P�homo��E� and P�hetero��E�,
one can find the corresponding EVDs, P�homo�

min �E� and
P�hetero�

min �E�, and calculate the average values of the corre-
sponding minimum energies, hEhomo

min i and hEhetero
min i. In par-

ticular, the average of the smallest of M� 2�R=�
(M
 1) values taken from a normal distribution with

zero mean and dispersion � is hEmini � ��
������������
logM
p

[4].
Therefore, hEhomo

min i is always smaller than hEhetero
min i. We

verified that, remarkably, this statistical law holds qualita-
tively true even for very small systems, having as few as
three or four particles on each interacting surface. The
strength of the effect is proportional to the difference of
the corresponding dispersions, j�homo � �heteroj �

jU0j�0�
����
A
p

. The larger the amplitude of the potential
and its correlation length, and the larger average density
of patterns is, the stronger is the effect.

Intuitively, the fact that P�homo��E� has a larger disper-
sion compared with P�hetero��E� implies that the corre-
sponding EVD for homodimers will be shifted towards
lower energies as compared with heterodimers. Indeed,
the EVD is obtained from the low energy tail of P�E�,
and this tail is shifted towards higher probabilities for
homodimers as compared with heterodimers. This is illus-
trated in Fig. 2, where the energy distributions P�homo��E�
and P�hetero��E�, and the corresponding EVDs, P�homo�

min �E�

FIG. 2 (color online). Computed probability distribution P�E�,
and EVD, Pmin�E�, for heterodimers and homodimers, respec-
tively. We generated 106 surfaces with random patterns, where
each surface has the diameter, D � 140 �A. We placed N0 � 350
particles (at random) on each surface, with the hard-core diame-
ter of a particle being d0 � 5 �A, (and the average surface
fraction of each pattern is thus N0d

2
0=D

2 ’ 0:446). The potential
U�r� was chosen to be a square well with the amplitude, U0 �
�2kBT, where kB is the Boltzmann constant and T is the
temperature, and with the length � � 8 �A [i.e., U�r� � U0, if
5 �A< r � 8 �A, and U�r� � 0, if r > 8 �A], E is plotted in the
units of kBT, and normalized by the total number of interface
particles. P�E� is normalized in such a way that

R
P�E�dE � 1.

The intersurface separation, h, was chosen to be h � 5:01 �A,
i.e., such that the surfaces are practically in contact. Inset:
computed dependence of � as a function of � for heterodimers
and homodimers, respectively. Straight lines represent the linear
fits to the data. The linear correlation coefficient is R ’ 0:99 in
both cases. The computed ratio of the fits’ slopes,
�homo=�hetero ’ 1:416, is in excellent agreement with the theo-
retical prediction,

���
2
p
’ 1:414. Error bars correspond to 1 stan-

dard deviation; most of error bars are smaller than the symbol
size.
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and P�hetero�
min �E�, are presented. In computing this figure we

have assumed that particles interact via a square-well
potential, U�r� � U0, if 5 �A< r � 8 �A and U�r� � 0 if
r > 8 �A, with U0 � �2kBT, and particles were repre-
sented by impenetrable hard spheres of diameter d0 �

5 �A. The characteristic length � is therefore � � 8 �A.
The computed ratio �homo=�hetero ’ 1:412 is very close
to its predicted value of

���
2
p

. We have also verified the
theoretical prediction of the linear dependence of � on
the characteristic length of the potential � (inset in Fig. 2).
The computed ratio of the linear fit slopes, �homo=�hetero ’
1:416, is again in excellent agreement with the predicted
value of

���
2
p

. The deviation from the linear behavior of � at
small values of � (short-range potential, when � is very
close to d0 and h) is due to the fact that there are very few
contacts between the particles across the interface possible,
and besides �, the two additional length scales, d0 and h,
become significant.

In summary, we confirmed theoretically the prediction
[2] of universally enhanced self-attraction of random pat-
terns. We predicted here that the magnitude of the energy
fluctuations for homodimers is always twice as large as
compared with the corresponding magnitude for hetero-
dimers. This exact result holds true for any type of the
interparticle interaction potential, and for random patterns
with an arbitrary number of types of interacting particles.
This implies that the distribution of lowest energies in pairs
of interacting surfaces (the EVD) is always shifted towards
the lower energies for homodimers as compared with
heterodimers, in agreement with the computational predic-

tion [2]. The effect stems from the additional symmetry
present in homodimers, providing the difference in the
dispersion of the energy distributions between homo- and
heterodimers. Our results may explain two important ex-
perimental observations: (i) the anomalously high fre-
quency of homodimers in protein interaction networks of
different organisms [5] and (ii) the enhanced propensity to
aggregate found in proteins with similar aminoacid se-
quences [6]. We suggest that both of these phenomena
might be an evolutionary manifestation of the general
physical principle of statistically enhanced self-attraction
predicted in our work.

The authors are grateful to B. Shakhnovich for useful
discussions.
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