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We develop a free-energy functional for an inhomogeneous system that contains both symmetry
conserved and symmetry broken parts of the direct pair correlation function. These correlation functions
are found by solving the Ornstein-Zernike equation with the Percus-Yevick closure relation. The method
developed here gives the pair correlation functions in the ordered phase with features that agree well with
the results found by computer simulations. The theory predicts accurately the isotropic-nematic transition
in a system of anisotropic molecules and can be extended to study other ordered phases such as smectics
and crystalline solids.
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The freezing of a fluid of anisotropic molecules into a
nematic phase is a typical example of a first-order phase
transition in which the continuous symmetry of the iso-
tropic phase is broken [1]. In a nematic phase, molecules
are aligned along a particular but arbitrary direction so as
to have a long-range order in orientation while the trans-
lational degrees of freedom remain disordered as in an
isotropic fluid. At the isotropic-nematic transition the iso-
tropy of the space is spontaneously broken and, as a con-
sequence, correlations in distribution of molecules lose
their rotational invariance. By computer simulations of a
system of ellipsoids Phuong and Schmid [2] evaluated the
effect of breaking of rotational symmetry on pair correla-
tion functions (PCFs) and showed that in a nematic phase
there are two qualitatively different contributions: one that
preserves rotational invariance and the other that breaks it
and vanishes in the isotropic phase. The symmetry preserv-
ing part of PCFs passes smoothly without any abrupt
change through the transition.

The correlation functions which describe the distribu-
tion of molecules in a classical fluid can be given as the
simultaneous solutions of an integral equation, the
Ornstein-Zernike (OZ) equation, and a closure relation
that relates correlation functions to the pair potential.
Well-known closure relations are the Percus-Yevick (PY)
relation, the hypernetted-chain (HNC) relation, and the
mean spherical approximation (MSA) [3]. This approach
has been used quite successfully to describe the structure of
isotropic fluids. However, the application of the theory to
ordered phases has so far been very limited, though no
feature of the theory inherently prevents it from being used
to describe structures of the ordered phases. Holovko and
Sokolovska [4] have used the MSA and the Lovett equation
[5] which relates one-particle density to PCFs to solve
analytically the OZ equation for a model of spherical
particles with the long-range anisotropic interaction and
determined the PCFs in a nematic phase. However, when
Phuong and Schmid [2] used the PY and the Lovett equa-

tions and solved the OZ equation numerically for a system
of soft ellipsoids, nematic phase was not found and for this
the PY closure was blamed. Here we adopt a method based
on density-functional formalism and show that the PY
relation gives nematic phase with PCFs harmonic coeffi-
cients that have features similar to those found by simula-
tions [2] and by analytical solution [4].

A density-functional theory (DFT) requires an expres-
sion of the grand thermodynamic potential of the system in
terms of one- and two-particle distribution functions and a
relation that relates the one-particle density distribution
��x� to PCFs. Such a relation is found by minimizing the
grand thermodynamic potential with respect to ��x� with
appropriate constraints [6]. The correlation functions that
appear in these equations are of the ordered phase and are
functional of ��x�. The free-energy functionals that exist in
the literature [7,8] and have been used to study the freezing
transitions replace these correlations by that of the iso-
tropic fluids [6]. This approximation limits the applicabil-
ity of the theory and needs improvement.

We first show how the fact that PCFs in the nematic
phase have two distinct parts leads us to divide the OZ
equation and the closure relation into two sets of equations.
The solutions of these equations give both the symmetry
conserving and the symmetry breaking parts of PCFs.
Using these correlation functions we construct a free-
energy functional. This free-energy functional is then
used to locate the isotropic-nematic transition in a model
system of elongated rigid molecules interacting via the
Gay-Berne (GB) pair potential [9]. The GB potential be-
tween a pair of molecules (i, j) is written as u�r̂ij; êi; êj� �

4��r̂ij; êi; êj��R�12 � R�6�, where R � �rij �
��r̂ij; êi; êj� � �0�=�0 and êi is the unit vector specifying
the axis of symmetry of the ith molecule. The expressions
for the angle dependent range parameter � and potential
well depth function � contain four parameters x0, k0,�, and
�. These parameters measure the anisotropy in the repul-
sive and attractive forces. The parameters �0 and �0 scale
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the distance and energy, respectively. The value of x0, k0,
�, and � are taken 3.0, 5.0, 2.0, and 1.0, respectively.

The OZ equation which relates the total PCF, h�x1;x2�,
with DPCF, c�x1;x2�, in an inhomogeneous system is
written as [6,10] h�x1;x2� � c�x1;x2� �

R
c�x1;x3� �

��x3�h�x3;x2�dx3, where xi indicates both position ri
and orientation �i of the ith molecule, dx3 � dr3d�3.
The PY relation is expressed as c�x1;x2� � �e�x1;x2� �
1��1� h�x1;x2� � c�x1;x2��, where e�x1;x2� �
exp���u�x1;x2��. We now write the pair correlation
functions h and c as a sum of symmetry conserved and
symmetry broken parts, i.e., h � h�0� � h�n� and c �

c�0� � c�n�. This allows us to write the OZ and PYequations
as

 h�0��x1;x2� � c�0��x1;x2�

� �0

Z
c�0��x1;x3�h�0��x3;x2�dx3 (1)

 c�0��x1;x2� � �e�x1;x2� � 1��1� h�0��x1;x2�

� c�0��x1;x2�� (2)

and

 h�n��x1;x2� � c�n��x1;x2� �
Z
c�0��x1;x3��n�x3�h

�0��x3;x2�dx3 �
Z
��0 � �n�x3���c

�0��x1;x3�h
�n��x3;x2�

� c�n��x1;x3�h�0��x3;x2� � c�n��x1;x3�h�n��x3;x2��dx3 (3)

 c�n��x1;x2� � �e�x1;x2� � 1��h�n��x1;x2� � c�n��x1;x2��:

(4)

Here ��x3� � ��0 � �n�x3��, where �0 is the bulk number
density and �n�x3� � �0�f��3� � 1�. f��� is the single
particle orientation distribution function normalized to
unity.

Equations (1) and (2) give relations that are identical
to the ones used in calculating PCFs in an isotropic

phase. Relations given by (3) and (4) are new and give
PCFs arising due to the breaking of symmetry. We chose a
coordinate frame where the z axis points in the direction of
director n̂ (director frame). All orientation dependent func-
tions are expanded in spherical harmonics Ylm��� [2,11].
This yields (for uniaxial nematic phase of axially symmet-

ric molecules) f��� �
P
l�even�

�����������������
�2l� 1�

p
PlYl0���=

�������
4�
p

and

  �r;�1;�2� �
X

l1l2lm1m2m

 l1l2lm1m2m�r�Yl1m1
��1�Yl2m2

��2�Y	lm�r̂�; (5)

where  stands for h, c, or e. Pl is the order parameter; its
value is zero in the isotropic phase and nonzero in the
nematic phase. In a uniaxial symmetric phase of axially
symmetric molecules, m1 �m2 �m � 0 and l1 � l2 � l
as well as each l are even. Because h�0�, c�0�, and e preserve
the rotational symmetry, for them  l1l2lm1m2m�r� �
 l1l2l�r�Cg�l1l2lm1m2m�, where Cg is the Clebsch-
Gordan coefficient.

We solved (1) and (2) for the GB potential using a
method described in [12] and determined the values of
c�0�l1l2lm1m2m

�r	� and h�0�l1l2lm1m2m
�r	� for values of l, li up to

lmax � 8 at reduced temperature T	�
 kBT=�0� � 1:0 and
for densities 0 � �	�
 ��3

0� � 0:36. To solve (3) and (4)
we first set up linear equations for h�n�l1l2lm1m2m

�r	� and

c�n�l1l2lm1m2m
�r	�, using the expansions described above. In

these equations h�0�l1l2lm1m2m
�r	�, c�0�l1l2lm1m2m

�r	� and the order
parameters Pl appear. Here we restrict ourselves to only
one order parameter P2 and solve these equations for 0 �
P2 � 0:70 at the interval of �P2 � 0:05 for all densities
between 0 and 0.34 and for l, li up to lmax � 4. The solution
is found using the same iterative method [12] as in the case
of (1) and (2) but with two additional precautions: as
coefficients h�n�l1l2lm1m2m

�r	� show oscillations (Fig. 2) which
extend to r	�
 r=�0� � 20 we extended the range of

r	�i:e:; r	max � 40� to ensure proper convergence. The other
point which needed special care is related to the pro-
nounced long-range tail which occurs in coefficients
h�n�l1l2lm1m2m

�r	� with m1, m2 � 1 (Fig. 3). For this we
adopted a method discussed in [2,13]. This ensured that
the finite size effect on the tail as well as its effect on other
harmonic coefficients are accounted for accurately.

The reduced free energy A��� of an inhomogeneous
system is a functional of density ��x� and is written as
[6] A��� � Aid��� � Aex���, where Aid��� �

R
dx��x��

�lnf��x��g � 1� is the ideal gas part. The excess part
Aex��� is related with the DPCF of the system as

 

�2Aex

���x1����x2�
� �c�0��x1;x2;�0� � c

�n��x1;x2; ����:

(6)

Aex��� is found by functional integration of (6). In this
integration the system is taken from some initial density to
the final density ��x� along a path in the density space; the
result is independent of the path of the integration [14]. For
the symmetry conserving part c�0� the integration in density
space is done taking isotropic fluid of density �l (the
density of coexistence fluid) as reference. This leads to
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 A�0�ex ��� � Aex��l� �
1

2

�
Z
dx1

Z
dx2���x1����x2��c�x1;x2�; (7)

where �c�x1;x2��2
R
d		

R
d	0c�0�fx1;x2;�l�		

0��0�
�l�g, ���x� � ��x� � �l, Aex��l� is the excess reduced
free energy of the isotropic fluid of density �l and �0 is
the average density of the ordered phase.

In order to integrate over c�n����, we characterize the
density space by two parameters 	 and 
 which vary from
0 to 1. The parameter 	 raises density from 0 to �0 as it
varies from 0 to 1 whereas parameter 
 raises the order
parameter from 0 to P2 as it varies from 0 to 1. This
integration gives

 A�n�ex ��� � �
1

2

Z
dx1

Z
dx2��x1���x2�~c�x1;x2�; (8)

where

 ~c�x1;x2� � 4
Z 1

0
d



Z 1

0
d
0

Z 1

0
d		

Z 1

0
d	0

� c�n��x1;x2; 		
0�0;

0P2�:

Note that while integrating over 	, P2 is kept fixed and
while integrating over 
, �0 is kept fixed. The result does
not depend on the order of integration. The free-energy
functional of an ordered phase is the sum of Aid, A�0�ex , and
A�n�ex . Note that the RY [7] free-energy functional is the sum
of only A0

id and A0
ex and contains an additional approxima-

tion in which �c�x1;x2� in (7) is replaced by c�x1;x2;�l�.
The grand thermodynamic potential defined as �W �

A� ��
R
dx��x�, where � is the chemical potential, is

preferred to locate the transition as it ensures that the
pressure and chemical potential of the two phases remain
equal at the transition. The transition point is determined
by the condition �W � Wl �W � 0. The order parame-
ters are determined from equations found by minimizing
the grand thermodynamic potential with appropriate con-
straints [6,13]. The isotropic-nematic transition at T	 �
1:0 with one order parameter is found to take place at
�	l �� �l�3

0� � 0:3325 with ��	�
 ��o � �l�=�l� �
0:0086 and order parameter P2 � 0:40. For the RY free-
energy functional the transition takes place at �	l � 0:3570
with ��	 � 0:0055 and P2 � 0:439. The symmetry break-
ing part of PCFs makes the isotropic phase unstable and
induces the emergence of the ordered phase at lower
density.

In Fig. 1 we show some harmonic coefficients of DPCF
in the director space for T	 � 1:0, �	 � 0:3361, and P2 �
0:44. While the coefficients c220 000�r

	� and c2201�10�r
	�

shown in Fig. 1(a) survive both in isotropic and nematic
phases, the coefficients c200 000�r	� and c002 000�r	� shown
in 1(b) survive only in the nematic phase and vanish in the
isotropic phase. The contribution arising due to symmetry
breaking to coefficients c220 000�r	� and c2201�10�r	� is

found to be small compared to the symmetry conserving
part. Few selected harmonic coefficients of h are shown in
Figs. 2 and 3 in director space. In Fig. 2 we plot the
harmonic coefficients h200 000�r

	� and h002 000�r
	� which

survive only in the nematic phase and note the oscillatory
behavior which continues to survive for large values of r	.
In Fig. 3 we plot coefficient h2201�10�r	� which is of
fundamental importance as it defines nematic elastic con-
stants [1] and decays as 1=r	 at large distance. This long-
range tail behavior is attributed to the director transverse
fluctuations [4] which give rise to orientational wave ex-
citations, i.e., the Goldstone modes. This can be seen by
taking the tensor order parameter Q�� �

1
N

PN
i�1

3
2 �

�ei�ei� �
1
3����, where �, � � x, y, z, and ei� is the �

component of the molecular axis vector ei of each mole-
cule and ��� the Kronecker symbol and calculating (as-
suming that the director is along z and the y axis is
perpendicular to wave vector q) the correlation
hQxz�q�Qxz��q�i. The result involves coefficients
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FIG. 1. Harmonic coefficients cl1l2lm1m2m�r
	� in the director

frame. In (a) we show two those coefficients which preserve
the rotational invariance while in (b) the coefficients that arise
due to symmetry breaking. In [2] harmonic coefficients are
labeled as cl1m1l2m2lm�r
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FIG. 2. Coefficients hl1l2lm1m2m�r� which survive only in the
nematic phase.
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h�n�l1l2lm1m2m
�q� with jm1j, jm2j � 1. These coefficients

which are the Fourier transform of h�n�l1l2lm1m2m
�r	� (Fig. 3)

behave as 1=q2 for q! 0. This is the case of the Goldstone
mode of zero mass.

When the Ward identity which must be satisfied in the
nematic phase is expressed in the functional differential
form it reduces to the Lovett equation [4] and is written as
 

1 � ��
X
l1

X
l0

���������������
2l0 � 1
p

Pl0

�������������������������������������
�2l1 � 1��2l0 � 1�

20�

s

� Cg�l1; l
0; 2; 0; 0; 0�Cg�l1; l

0; 2; 1; 0; 1�

�
Z
r2drcl1201�10�r�: (9)

Using the values of c2201�10�r
	�, c4201�10�r

	�, and P2 in the
nematic region we find the relation is fully satisfied.

The density-functional approach allows one to include
more order parameters in the theory even though they are
not included in calculating the PCFs. This is done through
the parametrization of ��x� [6]. When we take two order
parameters P2 and P4 and use the free-energy functional
developed here the transition takes place at T	 � 1 with
�	l � 0:317, ��	 � 0:026, P2 � 0:644, and P4 � 0:332.
These values compare well with the simulation values,
�	l � 0:32, P2 � 0:66, and P4 � 0:29 [15]. This compari-
son suggests that the effect of order parameter P4 on PCFs
is small.

We now briefly comment on how the theory developed
here can be applied to the ordered phases which need for
their description n�n � 2� number of order parameters. In
such a case we can think of a n-dimensional order parame-
ter space; a point in this space defines the values of all the n

order parameters. To obtain ~c, the integration in (8) can be
done along a straight line path that connects origin to a
point corresponding to the final values of the n order
parameters. This path is parametrized by a single variable

. However, c�n� appearing in (8) has to be written as
c�n��x1x2;		0�0;

0

�����������Pn
i�1

p
�2
i �, where �i is the ith order

parameter.
In conclusion, we developed a method of solving the OZ

equation with a closure relation to get both the symmetry
conserving and symmetry breaking parts of PCFs. Using
these correlation functions we constructed a free-energy
functional to study the freezing transition and other prop-
erties of an ordered phase. Since the symmetry breaking
parts of PCFs have features of the ordered phase including
its geometrical packing, the free-energy functional pro-
posed here will allow us to study various phenomena of
the ordered phases [13].
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FIG. 3. Harmonic coefficient h2201�10 in the director frame.
Details are same as in Fig. 1. Inset shows the plot of h2201�10
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extrapolated part.
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