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The segregation of solute particles on a moving interface leads to the appearance of two types of
instabilities near competing velocity thresholds. This behavior is shown to occur in a variety of exactly
solvable models where the interface motion is coupled to a diffusion process of the solute particles. These
models directly apply to the propagation of internal domain walls, but can also be generalized to surfaces
of growing crystals in the kinetics-limited regime.
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The externally controlled motion of domain walls, as
well as the propagation of metastable fronts are of basic
interest for a variety of phenomena, including reversible
switching effects and the growth of a stable new phase. As
outlined in [1] for many practical applications, the inter-
face dynamics can be significantly influenced by the seg-
regation of mobile impurities or, in case of an alloy, of
solute particles.

A conspicuous example of this is the solute-drag effect
in grain-boundary motion, discussed in a seminal paper by
Cahn [2]. In this work a one-dimensional model for the
uniform motion of a planar grain boundary through a dilute
atmosphere of diffusing impurity atoms has been consid-
ered. In spite of the simplicity of this model, a hysteresis
effect was found in the force-velocity diagram which,
according to Cahn, gives rise to a jerky motion of the grain
boundary.

In a later contribution, Roy and Bauer [3] proposed a
two-dimensional model which allows deformations of the
grain boundary and lateral diffusion of the impurity atoms.
Within this model a new inherent instability of the bound-
ary shape was discovered and traced back to transverse
convective flow of segregated impurity atoms.

More recently, an improper assumption on the drag force
in the Roy-Bauer model has been pointed out [4] which
deletes the instability in the predicted form, and especially
its appearance in the low-velocity regime. The arguments,
presented in [4], do not rule out, however, the very exis-
tence of a convection-induced instability above some finite
velocity threshold.

We now will demonstrate that both of the discussed
instabilities generically occur in a whole class of model
systems, describing the interaction of a moving interface
with an atmosphere of diffusing solute particles. The in-
stabilities become visible in the response function of the
defect geometry to a change of the external driving force.

Starting from a phase-field description, a general form of
this response function is calculated exactly, up to the
evaluation of a single integral which discriminates between
individual members of the model ensemble.

For each system the effective HamiltonianH depends on
the phase field��r; t� and the particle-diffusion fieldC�r; t�
in the general form

 H �
Z
d3r

�
�2

2
�r��2 �W ��� �

1

2
�C�U����2

�
; (1)

where � is a microscopic length of order 10�7 cm.
In order to establish appropriate expressions for the

potentials W ��� and U���, we consider the equilibrium
conditions �H=�� � �H=�C � 0. The standard choice
W � ��2 ��2

0�
2, combined with boundary conditions

�k�z � �1� � ��0, allows a solution �k�z� with a pro-
nounced kink, describing a static planar interface of thick-
ness �. Furthermore, Ck�z� �U��k�z�� 	 U�z� is the
segregation profile in thermal equilibrium which has con-
stant, in general, different values in the two bulk phases.
Close to the interface it will develop a peak, the height of
which can be tuned by temperature T which enters via the
representation Ck�z� / exp��E�z�=kT�, where E�z� is the
attractive or repulsive particle-interface interaction.

Since we are mainly interested in universal properties,
which are independent of the details of the potentials, we
in the following assume that W ��� is a double-well
potential with minima at � � ��0, and that U��� is a
single-well potential, carrying a parametric dependence on
temperature.

For the dynamics we adopt the model-C equations [5]

 @t� � ���H=��; @tC � Dr2�H=�C; (2)

where Langevin forces have been neglected. In (2) � is a
relaxation rate and D a diffusion constant which both have
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an Arrhenius dependence on temperature and on the ma-
terial. Near the melting point of metals these quantities are
of order � 
 1010 s, and D 
 10�9 cm2=s whereas in the
liquid phase D 
 10�5 cm2=s.

Insertion of (1) into (2) leads to the explicit equations
 

@t� � �f�2r2��W 0��� � �C�U����U0���g;

@tC � Dr2�C�U����:
(3)

We are interested in solutions �s�z� Vt�, Cs�z� Vt� of
(3) with the same boundary conditions for � as before, but
with Cs��1� � Cs��1� 	 C0. They describe, in a co-
moving frame, the motion of a planar interface with con-
stant velocity V > 0 in the z direction where the interface is
joined by a stationary solute-density profile.

If, for this case, the first Eq. (3) is multiplied by �0s and
integrated over z, one is led to the equations

 V � ��G� F�; �V�Cs � C0� � D�C0s �U0�: (4)

Here, � 	 ��2=� is the interface mobility, involving the
surface tension � 	 �2��0s; �

0
s� where the scalar product

means integration over z. Typical orders of magnitude for
surface tensions vary from � 
 102 erg=cm2 in solids
down to � 
 10�2 erg=cm2 in liquid crystals.

In (4) F 	W ���0� �W ���0� � �1=2��C0�
U���0��

2 � �1=2��C0 �U���0��
2 > 0 acts as an exter-

nal driving force, and

 G 	 �
Z
d�U0����Cs��� � C0�

� �
V
D

Z
d��Cs��� � C0�

2 (5)

appears as a solute-drag force.
The second Eq. (4) represents the first integral of the

resulting second-order differential equation for Cs���. Its
full solution reads

 Cs�� ;V� � C0 �
Z �

�1
d�U0��� exp

�
�
V
D
�� � ��

�
; (6)

which, inserted into (5), determines the drag force for any
given function U���.

In order to test the stability of the above solution, we go
back to the Eqs. (3), now written for a solution ��r; t� �
�s�z� Vt� h�x; t��, which is generated by an external
force F� f�x; t�. Following the steps, outlined below
Eqs. (3), and in more detail in [6], one arrives, to lowest
order of a gradient expansion, at the result
 

@th � ���@2h� g� f�

@tc � V@�c�D�@
2 � @2

� �c

�U0@th� �V=D��Cs � C0��@t �D@2�h;

(7)

where c�x; �; t� 	 C�x; z; t� � Cs��� � C0s���h�x; t�, and
@2 	 r2 � @2

z .

In (7) we have introduced a local-drag force

 g�x; t� 	 �
Z
d�U0���c�x; �; t�; (8)

which, together with h�x; t�, forms a pair of collective field
variables. The quantity (8) is very different from the excess
concentration of the solute at the interface, chosen as a
second field by Roy and Bauer [3]. This is, to our belief, the
basic reason for the failure of their approach. Indepen-
dently of this discrepancy, the transverse flow of the solute,
appearing according to Roy and Bauer in case of a tilted
defect, shows also up in our treatment in form of the last
term / @2h of Eqs. (7).

A remarkable advantage of our class of models is that,
for arbitrary U���, the local-drag force g�x; t� can be
extracted from the second Eq. (7) in a form which only
contains features of the uniform background motion (4). In
order to see this, we use in (7) the substitution c � n�
�V=D��Cs � C0�h which leads to the equation

 @tn� V@�n�D�@2 � @2
� �n � �U

0@t �U00V�h: (9)

In terms of Fourier-Laplace transforms n̂� �q; s� and
ĥ�q; s�, permitting the replacements @! iq, @t ! s
Eq. (9) has the solution

 n̂�
�Ds�V��ĥ
D�����

Z 1
�
d�U0���exp

�
�
D
�����

�

�
�Ds�V��ĥ
D�����

Z �

�1
d�U0���exp

�
�
D
�����

�
; (10)

where �	��V=2��
�������������������������������������������
�V=2�2�D�s�Dq2�

p
	���V.

This solution only applies to the regime Re�s��Dq2>0
where an instability might occur.

The crucial observation now is that the second integral in
(10) is similar to that appearing in (6) and therefore can be
expressed in terms of Cs�� ;���. In a similar way, the first
integral in (10) is related to the trapping profile �Cs�� ;���
for negative velocities, giving rise to a drag force �G����.
This finally implies that the Fourier-Laplace transform
ĝ�q; s� of the local-drag force (8) is fully determined by
the global drag forces G and �G.

The quantity ��q; s� 	 ��ĝ�q; s�=ĥ�q; s� appears as a
kind of self-energy in the Fourier-Laplace transform

 R̂�q; s� �
1

s� ��q2 ���q; s�
(11)

of the response function R�x; t� 	 �h�x; t�=�f�0; 0�, and
has the explicit form
 

��q; s� �
�2 �D2q2

D��� ��
� �G���� �

�2 �D2q2

D��� ��
�G����

�
V
D

�G�V�: (12)

Equations (11) and (12) represent a central result of the
present Letter. For each specific potential U��� the density
profiles Cs���, �Cs��� and, consequently, the drag forces G,
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�G can be calculated by simple integrations. The results then determine the response function R�x; t� which is the quantity
of principal interest, since it signals the existence of any instability.

Instabilities are most conveniently characterized by the behavior of the eigenmode frequencies of the system. Within the
regime Re �s� �Dq2 � 0 these are determined by the condition 1=R̂�q; s� � 0. Expressed in terms of �F���� � ��=��
�G����, F���� � ��=��G���� this condition is found to be of the general form

 �F�V � �� � ~F�����
D2q2 � �2

V � 2�
� �F�V � �� � F�V��V �D�q2 (13)

which is another main result of our investigation.
At q � 0, Eq. (13) generally has a solution � � 0,

belonging to a branch of eigenmodes s1�q� which passes
through the origin q � s � 0. By expanding (13) in
powers of q and s, one furthermore finds that, at the origin,
this branch has a horizontal slope and a curvature

 s001 �0� �
2D�F�V�=V � F0�V� � �=D�

F0�V�
: (14)

The numerator in (14) assumes the value �2� for V ! 0
as well as for V ! 1, since, according to (5) and (6), F�V�
approaches a linear function in V in both limits.

A positive value of the numerator will, however, arise
within an interval VA�T�<V < VB�T�, defined by
F�VA;B; T�=VA;B � @VF�VA;B; T� � ��T�=D�T�. Here, the
dependence on temperature T is relevant, since the excess
density of the solute particles at the interface will progres-
sively evaporate with increasing temperature which causes
the interval VB�T� � VA�T� to shrink to zero. This, in fact,
happens at some finite temperature TC, fixed by the con-
ditions @2

VF�VC; TC� � �2��TC�=VC, and VC 	 VA�TC�.
From these considerations we conclude that, provided

@VF�V; T�> 0, the planar form of the interface becomes
unstable in the regime VA�T�< V < VB�T�, T < TC. This
type of instability is caused by the convective flow of solute
particles, contributing to the local-drag force g�x; t�. The
latter constraint is worth mentioning, since, even in pres-
ence of a particle flow, ĝ�0; 0� turns out to be zero, in
agreement with our results in [4].

If the anomalous behavior @VF�V; T� � 0 happens to
occur in some range Va�T� � V � Vb�T�, then (13) allows
another branch s2�q� which again has zero slope at the
origin. However, close to the boundary values Va�T� and
Vb�T�, given by @VF�Va; T� � @VF�Vb; T� � 0, one finds

 s2�0� � �
4Va;b@VF

D�F=V2
a;b � 2@2

VF�
; (15)

which is positive for V * Va�T�, and for V & Vb�T�, re-
spectively, indicating an instability of a different origin.

Inside this new regime an increase in velocity leads to a
decrease of the solute drag, initiating a self-amplifying
destabilizing process. Since this may already happen at
q � 0, this case corresponds to an instability where the
whole interface may keep its planar geometry, supporting
Cahn’s picture of a jerky dynamical behavior. The non-
diffusive character of this process derives from the fact
that, contrary to the density c�r; t�, the quantity g�x; t� is
nonconserved.

This type of instability can only occur at temperatures T
below some critical point, defined by the conditions
@2
VF�Vc; Tc� � 0, and Va�Tc� � Vc. Another constraint is
VA�T�>Va�T�, since, otherwise, the planar form of the
interface is already unstable, before the threshold Va�T� is
reached. Even then, one has to take care of the additional
source of an instability due to the change of sign of the
denominator of (14).

In order to corroborate all these conclusions, we now
will consider a specific model, defined by U��� � U����

 U��� � C0 �U0�1� �=�� (16)

for 0 � � � �, and U��� � C0 for � � �. The properties
of this model will be described in terms of the scaled
variables X 	 V�=D, Y 	 D=���U2

0�, Z 	 F��=D,
where Y is a measure of temperature.

Within the model (16) the uniform motion of a planar
interface, carrying a layer of solute particles, is described
by the equation

 Z � X� �2X� �e�X � 1��e�X � 3��=�YX2�: (17)

This result is illustrated in Fig. 1 by a set of isotherms
which shows all expected features. The shaded region is a
kind of spinodal regime, with the critical point located at
Xc � 3:611, Yc � 0:0387.

An estimate for the threshold XA of the first instability
can be obtained in the regime X
 Xc by an expansion of

FIG. 1 (color online). Isotherms according to Eq. (17) for Y >
Yc, Y � Yc, Y < Yc (from above to below). Spinodal-like insta-
bilities occur in the shaded region.
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Z�X; Y� in X up to second order, and insertion into the
condition s001 �0� � 0. This leads to the approximate result
XA � 2Y��=D which, in terms of the original variables,
means VA � 2D�=��U0�

2. Accordingly, the threshold VA
is shifted to lower values with increasing size �U0 of the
particle cloud at the interface.

The spectrum of real eigenmode frequencies, written in
terms of the scaled variables Q 	 q� and S 	 s�2=D, is
shown in Fig. 2 for XA�Y�<Xa�Y�, and in Fig. 3 for the
opposite case Xa�Y�<XA�Y�. Figure 3 also reveals that the
two branches S1�Q� and S2�Q�, in fact, form a single
connected curve.

Coming back to the general discussion, we have to say
that all treatments which, like the recent ones in [7], and in
[8], are basically one dimensional, not only miss the
convection-induced instability, but also the hybridization
of the two instabilities which inevitably emerges in the
case Va�T�<VA�T�, T < Tc, TC.

We believe that both segregation instabilities have a
chance to be seen in many real systems, since the class
of models, chosen in the present Letter, contains all the
essentials of interface motion in presence of mobile solute
particles. Modifications, like anisotropic surface tensions
or space-dependent and anisotropic kinetic coefficients, are
not expected to remove these attributes.

Concerning a variable diffusivity, a generalization of the
Cahn theory has already been proposed in [9], also with
regard to phase interfaces in alloys. However, like in most
other approaches, the procedure is limited to the one-
dimensional case which only allows to treat the bare hys-
teresis effect.

If, within our class of models, the diffusion coefficient is
assumed to be different in the two bulk phases, the result-
ing model should also allow to discuss segregation pro-
cesses at the interface of a growing crystal. On the basis of
a phase-field representation, as described in [10], and in

[11], such an approach has been presented in [12]; how-
ever, again evaluated for the one-dimensional case only. In
higher dimensions we expect the appearance of a convec-
tive segregation instability in the kinetics-limited regime as
a kind of counterpart of the Mullins-Sekerka instability
[13] in the diffusion-controlled regime.
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FIG. 2 (color online). Eigenspectrum S�Q� in the case
XA�Y�<X��Y�.

FIG. 3 (color online). Eigenspectrum S�Q� in the case
X��Y�< XA�Y�.
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