
Optical Lattice Polarization Effects on Hyperpolarizability of Atomic Clock Transitions

A. V. Taichenachev* and V. I. Yudin*
Institute of Laser Physics SB RAS, Novosibirsk 630090, Russia

Novosibirsk State University, Novosibirsk 630090, Russia

V. D. Ovsiannikov
Physics Department, Voronezh State University, Voronezh 394006, Russia

V. G. Pal’chikov
Institute of Metrology for Time and Space at National Research Institute for Physical-Technical and Radiotechnical Measurements,

Mendeleevo, Moscow Region 141579, Russia
(Received 29 June 2006; published 25 October 2006)

The light-induced frequency shift due to hyperpolarizability (i.e., terms of second-order in intensity) is
studied for a forbidden optical transition, J � 0! J � 0. A simple universal dependence on the field
ellipticity is obtained. This result allows minimization of the second-order light shift with respect to the
field polarization for optical lattices operating at a magic wavelength (at which the first-order shift
vanishes). We show the possibility for the existence of a magic elliptical polarization, for which the
second-order frequency shift vanishes. The optimal polarization of the lattice field can be either linear,
circular, or magic elliptical. The obtained results could improve the accuracy of lattice-based atomic
clocks.
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In recent years significant attention has been devoted to
optical lattice atomic clocks [1,2], in part because the
prospects for a fractional frequency uncertainty of such a
clock could achieve a level 10�17–10�18. Apart from ob-
vious practical applications, such improved clocks will be
critical for a variety of terrestrial and space-borne applica-
tions including improved tests of the basic laws of physics
and searches for drifts in the fundamental constants [3].
The crucial ingredient, for achieving such high metrolog-
ical performance, is the existence of the magic wavelength
�m, at which the first-order (in intensity) light shift of the
clock transition 1S0 !

3P0 cancels for alkaline-earth-like
atoms (such as Mg, Ca, Sr, Yb, Zn, Cd). To date, in several
experiments cold atoms were trapped in optical lattices at
the magic wavelength and the clock transition was ob-
served [2,4–6]. From the metrological viewpoint even
isotopes (with zero nuclear spin) are more attractive. To
excite strictly forbidden clock transitions in even isotopes
the method of magnetic field-induced spectroscopy was
proposed [7] and used [5].

Obviously, the achievement of such an extraordinary
accuracy in frequency standards is a challenging goal. On
the way to this goal it will be necessary to use new
approaches and to solve step-by-step the critical physical
problems [2]. For example, since at the magic wavelength
�m the first-order shift vanishes, one of the main factors
that limits the accuracy of these optical clocks is the
second-order shift due to the atomic hyperpolarizability.
Indeed, for the formation of optical lattices with the po-
tential depth of order of MHz [2,4–6] it is necessary to use
laser beams with the intensity at a level of a few tens of
kW=cm2. According to our numerical estimates for differ-

ent alkaline-earth-like atoms [8,9] and first experimental
observations for Sr [6], the second-order shift can be at a
level of 1–10 Hz in such high-intensity fields. In this case
to get planned accuracy we need strictly to control the
spatially nonuniform optical lattice fields at a level of
10�3–10�5 under conditions of strong focusing, reflec-
tions, and interference of light beams. Here apart from
long-term stabilization of the laser radiation (power, trans-
verse distribution of intensity) we need precision long-term
stability of the whole optical system. A significant reduc-
tion of a lattice field intensity is not an effective solution of
the problem, because in this case both the number and
lifetime of the trapped atoms will be reduced also.

Thus, the hyperpolarizability effect on atoms in optical
lattices is an important physical problem, which needs to
be carefully studied (the papers [1,6,8] have begun such
investigations). In this context the search for alternative
methods of minimization of the second-order shifts is
especially relevant.

In the present Letter we study the dependence of the
second-order shift on the elliptical field polarization for the
optically forbidden J � 0! J � 0 transition. We show
how to minimize this shift with respect to the ellipticity
of the lattice field polarization. It turns out that under
certain conditions there exists a magic ellipticity at which
the second-order light shift vanishes.

Consider an atom in a monochromatic elliptically polar-
ized light field with frequency !:

 E �t� � RefEee�i!tg; (1)

where E is a scalar field amplitude, e is a complex unit
polarization vector, �e � e�� � 1. If the quantization axis
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Oz is orthogonal to the polarization ellipse, we have the
following expansions in Cartesian fex, ey, ezg and spherical
fe0 � ez, e�1 � ��ex � iey�=

���
2
p
g bases:

 e � cos�"�ex 	 i sin�"�ey

� � sin�"� �=4�e�1 � cos�"� �=4�e	1: (2)

Here the ellipticity angle " can take values ��=4 
 " 

�=4. Obviously [see in Fig. 1(a)], j tan�"�j is equal to the
ratio of the minor axis to the major axis and the sign of "
determines the helicity. Note that " � 0 corresponds to a
linear polarization, while " � ��=4 correspond to circu-
lar polarizations. The atom-field interaction will be con-
sidered in the dipole approximation ��d̂E�.

Each energy level of the forbidden Jg � 0! Je � 0
transition is shifted by amount �Ej (j � e, g) in response
to the field (1). These shifts can be expanded in series in
even powers of the field amplitude E:

 �Ej=@ � �jI 	 �jI2 	 ::: �j � e; g�; (3)

where I � cjEj2=8�. The first term ( / I) describes a first-
order Stark shift, which for levels with J � 0 does not
depend on the field polarization e; i.e., the polarizabilities
�j are completely determined by the field frequency !
alone. The second term ( / I2) in (3) describes energy level
shifts due to the hyperpolarizability (the general expression
of the hyperpolarizability for levels with arbitrary angular
momentum is presented in [10] ). Coefficients �j depend
both on the frequency! and on the ellipticity " [11]. From
Eq. (3) it follows that the frequency of forbidden transition
!0 is shifted by the external field (1) by an amount

 �!0 � ��Ee��Eg�=@� ~��!�I	 ~��!;"�I2	 . . .

~��!� � �e��g; ~��!;"� ��e��g; . . . :
(4)

At the magic frequency !m � 2�c=�m the first-order
Stark shift vanishes, i.e., ~��!m� � 0.

The dependence of the coefficient ~��!; "� on ellipticity
can be used to minimize the influence of the second term

( / I2). According to electric dipole selection rules, the
second-order shifts for levels with J � 0 originate from all
possible transitions J � 0! J0 � 1! J00 � 0, 1, 2 (qua-
dratic on the field amplitude with frequencies 0,�2!), i.e.,
via virtual levels with J0 � 1. It can be rigorously proven
that each of the three generalized channels gives only two
contributions with different polarization dependencies in
�j:

 �j �
X

J00�0;1;2

�R�j�J00 �!�P J00 �e� 	 S
�j�
J00 �!�QJ00 �e�; (5)

where R�j�J00 �!� and S�j�J00 �!� depend on the frequency only.
All polarization dependencies are contained in the factors
 

P J00 �e� � �fe� � e�gJ00 � fe � egJ00 �;

QJ00 �e� � �fe � e�gJ00 � fe� � egJ00 �;
(6)

which are the scalar products of tensors composed of the
unit polarization vectors e and e� and can be presented
explicitly in terms of the scalar (e � e) and vector [e� e�]
products as [12]:

 P 0�e� � j�e � e�j2=3; Q0�e� � 1=3;

P 1�e� � j�e� ej2=2� 0; Q1�e� � j�e� e�j2=2;

P 2�e� � 1� j�e � e�j2=3; Q2�e� � 1=6	j�e � e�j2=2:

(7)

Using expansion (2), we find:

 j�e � e�j2 � cos2�2"�; j�e� e�j2 � sin2�2"�: (8)

Equations (5), (7), and (8) allow us to present the polar-
ization dependence of the coefficients �j in Eq. (3) as
�j � Aj�!�cos2�2"� 	 Bj�!�sin2�2"�. As a result, we
can write the universal expression for the polarization
dependence of the second-order light shift in the following
simple form:

 

~��!; "� � ~A�!�cos2�2"� 	 ~B�!�sin2�2"�: (9)

Thus, to reconstruct a complete polarization dependence of
the coefficient ~��!; "�, we need to know (by calculation or
experiment) its value only in two points, for example, for
linear (" � 0) and circular (" � ��=4) polarizations:

 

~A�!� � ~��!; 0�; ~B�!� � ~��!;��=4�: (10)

It is worth noting, that the terms RJ00 �!�P J00 �e� in Eq. (5)
may demonstrate, in particular, the contributions of two-
photon resonances to states J00 � 0, 2. However, the scalar
product P 0�e� will vanish for circular polarization, so the
two-photon resonances to an excited state J00 � 0 will
appear only for the noncircular polarization, " � ��=4
[see Eqs. (7) and (8)]. Two-photon resonances to J00 � 1
states do not appear, as the scalar product P 1�e� � 0 [see
Eq. (7)]. The terms SJ00 �!�QJ00 �e� may have large ‘‘reso-
nance’’ values when the fine-structure splitting (for ex-

FIG. 1. (a) Definition of the elliptical polarization parameter "
[see Eq. (2)]. (b) Illustration of the existence of a magic elliptical
polarization "m [see Eq. (11)], when the coefficients ~A�!� and
~B�!� have opposite signs.
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ample, between the metastable 3P0 and 3P1;2 sublevels of
the 3PJ triplet) is small. The matrix elements with J00 � 1
contribute only to the term S1�!�Q1�e� of Eq. (5), which
disappears for linear polarization (" � 0), since Q1�e� �
0 for e � e�. Thus, in the vicinity of resonance one can
anticipate a strong dependence of the hyperpolarizability
both on the frequency and polarization of the field.

Equation (9) allows us to optimize the light shift (4) with
respect to the ellipticity parameter ". This optimization
consists of determining the optimal ellipticity "opt, which
minimizes the absolute value j ~��!; "�j, i.e., j ~��!; "opt�j �

minfj ~��!; "�jg. Such a minimization is very important for
optical frequency standards based on optical lattices at
magic frequency, where the first-order Stark shifts cancel
out [ ~��!m� � 0] and the higher-order shift / I2 becomes
one of the main factors limiting the accuracy of the future
optical frequency standards.

As is seen from (9), if the coefficients ~A�!� and ~B�!�
have the same sign, then the optimal polarization is either
linear ("opt � 0) or circular ("opt � ��=4). Apart from
this, (9) allows for a very intriguing possibility, when the
coefficients ~A�!� and ~B�!� have opposite signs. In this
case a magic elliptical polarization "m always exists [see in
Fig. 1(b)], for which the second-order light shift vanishes:

 

~��!; "m� � 0) tan�2"m� � �
����������������������������
� ~A�!�= ~B�!�

q
(11)

and, consequently, "opt � "m. Obviously, the most inter-
esting case arises for the magic ellipticity at the magic
frequency !m, i.e., when ~��!m; "m� � 0. One of possible
candidates for such a remarkable coincidence is Yb.

According to the experimental results [5], the magic
wavelength �m for the forbidden transition �6s2�1S0 !
�6s6p�3P0 in Yb equals approximately to 759.35 nm.
Comparing this value with the energy spectrum, one finds
that this wavelength nearly meets the two-photon reso-
nance conditions that occur at 759.71 nm [�6s6p�3P0 !
�6s8p�3P0 resonance] and 754.23 nm [�6s6p�3P0 !
�6s8p�3P2 resonance]. Therefore, the main contribution
to the second-order shift / I2 is due to the shifts of meta-
stable level Je � 0 [i.e., �6s6p�3P0], originating from in-
teractions via levels indicated in Fig. 2 (i.e., resonant
contributions). Thus,

 

~��!; "� � ��1�e 	 �
�2�
e 	 �

�3�
e 	 �

�4�
e ; (12)

where terms ��1;2�e are related to the resonance two-photon
transitions �6s6p�3P0 ! �6s8p�

3P0;2 at the doubled magic

frequency 2!m, and ��3;4�e originate from the interaction of
the level �6s6p�3P0 with the other levels �6s6p�3P1;2 of the
same fine-structure manifold. The polarization dependen-
cies for ��1;2�e are determined by P 0;2�e�, whereas for ��3;4�e

are determined by Q1;2�e�. Note that the resonance two-
photon transition J � 0! J � 1 is forbidden in the dipole
approximation [13] [see also P 1�e� � 0 in Eq. (7)]; there-

fore, in (12) the contribution from the transition
�6s6p�3P0 ! �6s8p�

3P1 (see Fig. 2) is neglected.
Using (7) and (8), the terms in (12) can be written as:

 ��1�e �!; "� �
b1�!�
�0

cos2�2"�
3

� 0 ��0 > 0� (13)

 ��2�e �!; "� �
b2�!�
�2

3� cos2�2"�
3

< 0 ��2 < 0� (14)

 ��3�e �!; "� � �
b3�!�
�10

sin2�2"�
2


 0 (15)

 ��4�e �!; "� � �
b4�!�
�20

1	 3cos2�2"�
6

< 0; (16)

where the coefficients b1;2;3;4 are assumed to be positive, �0

and �2 are the two-photon detunings from the transitions
�6s6p�3P0 ! �6s8p�

3P0;2, and �10 and �20 are the fine-
structure splittings of the �6s6p�3P0;1;2 state (see Fig. 2).

From Eq. (13), the term ��1�e is positive (because �0 > 0),
while all the other terms ��2;3;4�e are negative.

As it follows from (13) and (15), in the case of linear
polarization (" � 0) the term ��1�e becomes maximal, and
��3�e � 0. Because of the strong resonance conditions
j�2=�0j � 15 and �20=�0 � 200, we expect that the term

FIG. 2. Yb energy levels responsible for the main contributions
��1;2;3;4�e to the second-order shift of the forbidden transition
�6s2�1S0 ! �6s6p�

3P0 (all wavelengths are given in nm).
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��1�e will dominate over ��2�e and ��4�e . This directly leads to
a positive value for ~��!m; 0�, i.e., ~A�!m�> 0 in accor-
dance with (10). For circular polarization (" � ��=4) we
have ��1�e � 0 and ��2;3;4�e < 0, which leads to a negative
~��!m;��=4�, i.e., ~B�!m�< 0 according to (10). Thus, the
coefficients ~A�!m� and ~B�!m� may have opposite signs,
thus providing a sufficient condition for the existence of a
magic elliptical polarization "m (11) at the magic fre-
quency !m for Yb.

It should be stressed that the qualitative analysis above
does not guarantee the existence of a magic ellipticity for
Yb, because we did not take into account contributions to
hyperpolarizability from the inner-shell electrons, nor nu-
merous off-resonant contributions in ~��!m; "� of the jump-
ing electron. So, while there is a good chance of a magic
ellipticity for Yb, the ultimate answer will be given by an
experiment. Nevertheless, the analysis shows that the pres-
ence of the near-resonance two-photon transitions can lead
to an intriguing situation. In this context, it is worth noting
that for Sr atoms there also is a near-resonant two-photon
transition �5s5p�3P0 ! �5s4f�

3F2 [6]. In [6] the second-
order shifts have been investigated only for a linearly
polarized field. From the experimental results it follows
that ~A�!m�> 0. The value and sign of second-order shift in
circularly polarized field (i.e., the coefficient ~B�!m�) are
still unknown. Moreover, for circular polarization the
negative contribution due to the interaction with the level
�5s5p�3P1 (analogue of the term ��3�e in Fig. 2) becomes
maximal [see Eq. (15)], while for linear polarization it
equals to zero. Consequently, the question of the optimal
polarization remains open and the possibility of a magic
ellipticity for Sr still takes play.

Concluding, for forbidden optical transition J � 0!
J � 0 (for example, 1S0 !

3P0 clock transition in even
isotopes of alkaline-earth-like atoms) we have investigated
the polarization dependence of the higher-order frequency
shifts / I2, originating from the atomic hyperpolarizabil-
ity. This dependence has a simple universal form (9) and
we have described the method for minimizing the second-
order shift for optical lattices at the magic frequency !m.
To this end, the higher-order shifts for linear and circular
field polarization should be measured and compared. If
these shifts are the same sign, then the optimal polarization
(either circular or linear) will correspond to minimal ab-
solute value of the shift. If the signs of the measured shifts
are different, then a magic ellipticity "m will exist, where
the second-order shift vanishes. The magic ellipticity can
be estimated from (11), and determined more accurately
from experiments.

It should be stressed that the existence of a magic
ellipticity allows a practically ideal one-dimensional stand-
ing wave optical lattices for the frequency standards, be-
cause in this case it is not necessary to control strictly the
lattice field intensity. Consequently, one can use high-

intensity fields to create deep potential lattices with high
efficiency of trapping and with longer capture time. Note
also that in deep potential lattices cold atoms are localized
on length scales much less than the field wavelength, i.e.,
the strong Lamb-Dicke regime is realized.

These results can be extended to 2D and 3D lattices in
the field with spatially nonuniform polarization [14]. Here
the lattice field configuration should be chosen in such a
way that at the potential energy minimum the local field
polarization coincides with the optimal value (either linear,
circular, or magic) for the given element. In this case for
lower vibrational levels the second-order shifts will be
minimal, assuming the Lamb-Dicke regime.
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