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For every positively curved Kähler-Einstein manifold in four dimensions, we construct an infinite
family of supersymmetric solutions of type IIB supergravity. The solutions are warped products of AdS3

with a compact seven-dimensional manifold and have nonvanishing five-form flux. Via the anti–de Sitter/
conformal field theory correspondence, the solutions are dual to two-dimensional conformal field theories
with �0; 2� supersymmetry. The corresponding central charges are rational numbers.
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The anti–de Sitter/conformal field theory (AdS/CFT)
correspondence [1] states that any solution of string or
M theory with an AdSd�1 factor should be equivalent to
a conformal field theory in d spacetime dimensions. This
correspondence, and its generalizations, has provided pro-
found insight into the nonperturbative structure of string
theory, the structure of quantum field theory, and the
quantum properties of black holes.

Backgrounds with AdS3 factors are of particular interest
because, unlike in higher dimensions, the conformal group
in two dimensions is infinite dimensional. As a conse-
quence, two-dimensional conformal field theories are
much more tractable than their higher dimensional cousins;
for instance, many models are exactly solvable, and there is
a considerable literature on the subject. It would be a
significant development if, via the AdS/CFT correspon-
dence, string or M theory can make contact with this large
body of work.

However, until now there were only a few known ex-
plicit AdS3 �M solutions, with compact M. The most
well studied class of examples are the AdS3 � S3 � X
backgrounds of type IIB supergravity, where X � T4 or
K3. These are dual to N � �4; 4� conformal field theories
that are deformations of the sigma model based on the
orbifold Sym�X�n=Sn. From a string theory perspective,
these backgrounds describe the backreaction of a D-brane
configuration that can be related to a black hole in five
dimensions. It is a remarkable fact that the entropy of this
black hole can be precisely derived from the central charge
of the dual conformal field theory [2].

There have also been recent investigations into the con-
formal field theory dual to the AdS3 � S

3 � S3 � S1 back-
ground of type II string theory [3] (see [4–8] for earlier
discussions). Despite the fact that the field theory has a
larger version of N � �4; 4� superconformal symmetry
than those dual to the AdS3 � S

3 � X solutions, it has
proved more difficult to identify them as a number of
subtleties arise.

The purpose of this Letter is to present a new infinite
class of supersymmetric AdS3 backgrounds of type IIB

string theory, which are dual to two-dimensional conformal
field theories with N � �0; 2� supersymmetry. It will be
very interesting if these conformal field theories can be
explicitly identified. It will also be very interesting to know
whether our solutions can be related to black holes.

The new solutions are warped products of AdS3 with a
compact seven-dimensional manifold M7 and have non-
trivial self-dual five form. The manifold M7 is constructed
as a U�1� fibration over a six-dimensional manifold B6. In
turn, B6 is an S2 bundle over an arbitrary Kähler-Einstein
manifold KE4 with positive curvature. Such KE4 manifolds
are either S2 � S2, CP2, or a del Pezzo surface dPk with
k � 3; . . . ; 8. For each such KE4 we have an infinite dis-
crete number of explicit solutions parametrized by two
positive integers p and q, together with an integer n which
specifies the D3-brane charge. The fibration structure im-
plies that the group of symmetries preserving the solutions
contains at least two U�1� factors, one of which corre-
sponds to the R symmetry of the dual conformal field
theory. The construction is remarkably similar to the con-
struction of seven-dimensional Sasaki-Einstein manifolds
presented in [9], but we do not know of any direct
connection.

As we shall show, the standard supergravity computation
gives a rational central charge c for the dual two-
dimensional superconformal field theories. Specifically,

 c �
9pq2�p�mq�

3p2 � 3mpq�m2q2

Mq

m2h2 n
2; (1)

where the integers m and M depend on the specific choice
of KE4: for S2 � S2 we have m � 2, M � 8; for CP2 we
have m � 3, M � 9; for the del Pezzos dPk, we have m �
1, M � 9� k. Finally, h � hcffM=m2; qg.

The type IIB solutions presented here were constructed
from a much richer set of solutions ofD � 11 supergravity
that will be described elsewhere [10]. The latter solutions
are warped products of AdS3 with eight-dimensional mani-
folds that are topologically S2 bundles over six-
dimensional Kähler spaces. In the special case that the
six-dimensional manifold is KE4 � T2, dimensional reduc-
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tion along one leg of the T2 and T duality along the other
leg leads to the solutions presented here. In the companion
paper [10] we will also show that when the six-dimensional
manifold is S2 � S2 � T2, with the S2 having different
radii, we obtain additional generalizations of the type IIB
solutions presented here. The construction of these new
AdS3 solutions has many similarities with the construction
of the AdS5 solutions constructed in [11,12]. Indeed the
latter references provided key inspiration for the work
presented here and in [10].

In the remainder of this Letter we present the detailed
local form of the new solutions and then determine the
conditions that need to be imposed in order for the local
solutions to extend to global solutions.

The local solutions.—The type IIB solutions have a
metric that is a warped product of AdS3 with a seven-
dimensional manifold M7:

 ds2 � L2w�ds2�AdS3� � ds2�M7��: (2)

The warp factor, w, just depends on the coordinates on
M7, and hence this metric has all of the isometries of
ds2�AdS3�. If KE4 is an arbitrary positively curved Kähler-
Einstein manifold with metric ds2

KE4
and Kähler form J,

then the metric on M7 is given by

 ds2�M7� �
3

8y
ds2

KE4
�

9dy2

4q�y�
�

q�y�D 2

16y2�y2 � 2y� a�

�
y2 � 2y� a

4y2 Dz2; (3)

where D � d � P, Dz � dz� g�y�D , and

 g�y� �
a� y

2�y2 � 2y� a�
;

q�y� � 4y3 � 9y2 � 6ay� a2:
(4)

Here a is a constant, dP � J, and in these coordinates the
warp factor is simply w � y. We have chosen normaliza-
tions so that ds2

AdS3
is the metric on a unit radius AdS3 and

R � J, where R is the Ricci form of KE4 and the constant
L is arbitrary, reflecting the scaling symmetry of the
type IIB supergravity action. The only other nonzero
type IIB field in the solution, other than the string coupling
gs, is the self-dual five form which can be written as

 gsF5 � L4�volAdS3
^!2 � J ^!3�; (5)

where
 

!2 � �
a
4
J�

y�a� y�

2�y2 � 2y� a�
dy ^D � ydy ^Dz;

!3 �
3�y� a�

64y
J ^Dz�

3a

64y2 dy ^D ^Dz

�
3q�y�

128y�y2 � 2y� a�
J ^D ; (6)

and volAdS3
is the volume form of ds2�AdS3�. Note that

both @ and @z are Killing vectors, and thus the symmetry
group of the background, including F5, is at least G�
U�1�2, where G is the group of the isometries of KE4 that
preserve J.

In [10] we show how to derive this class of solutions
from a more general family of solutions of D � 11 super-
gravity. We also explicitly discuss the preservation of
supersymmetry arguing that the solutions must be dual to
conformal field theories with N � �0; 2� supersymmetry.
Furthermore, the form of the Killing spinors implies that
@ generates the isometry dual to the U�1�R symmetry of
the field theory. Here, instead, we show that we do indeed
have a solution by simply comparing with the elegant
analysis of the most general type IIB supergravity solutions
with AdS3 factors and nonvanishing F5 presented in [13].
There it was shown that the metric ds2�M7� can always,
locally, be written as a U�1� fibration over a six-
dimensional Kähler manifold satisfying some additional
properties. Introducing the new coordinates  �  0 � 2z0,
z � �2z0 and identifying z0 as the coordinate on the U�1�
fibration, one can check that our solution satisfies all of the
conditions in [13] [one needs to take into account a rescal-
ing of the five-form flux and also a typo in (3.22) of [13] ].

Global analysis.—We now need to show that the local
solution given above can be defined globally. First, we
need to fix the global structure of M7. We will assume
that M7 is an S1 bundle (with the fiber parametrized by z)
over a compact six-dimensional base manifold, B6. The
metric on B6 is given by

 ds2�B6� �
3

8y
ds2

KE4
�

9dy2

4q�y�
�

q�y�D 2

16y2�y2 � 2y� a�
: (7)

For a suitable choice of the range of a and y, one can take
B6 to be an S2 bundle (with the fiber parametrized by y,  )
over KE4. More precisely, if L is the canonical line bundle
of KE4, the S2 bundle is obtained by adding a point to each
fiber. Topologically, M7 is the same manifold that was
used in the construction of seven-dimensional Sasaki-
Einstein metrics found in [9].

We first need to show that the metric (7) on B6 is
complete and regular. It has potentially singular points at
the roots of the cubic polynomial q�y�, at the roots of the
quadratic polynomial y2 � 2y� a, and at y � 0. If we
assume that a 2 �0; 1�, then the three roots yi of q�y� are
real and strictly positive. If we let y1 < y2 < y3, then
y1; y2 2 �0; 1�. Furthermore, y2 � 2y� a is strictly posi-
tive in the interval (y1, y2). Thus, by choosing the range of
y 2 �y1; y2� we are left with potential problems only at y1,
y2, where gyy diverges and g  vanishes. However, these
are merely coordinate singularities analogous to those of
polar coordinates at the origin of R2. Near y1 and y2 (and,
in fact, also y3) the (y,  ) part of the metric takes the
approximate form

PRL 97, 171601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 OCTOBER 2006

171601-2



 

9

4q0�yi�

�
dr2 �

q0�yi�2

144y2
i �y

2
i � 2yi � a�

r2d 2

�
; (8)

where we defined ri � 2
�������������
y� yi
p

. The observation that
q0�y�2 � 144y2�y2 � 2y� a� � �36q�y� for any y shows
that (8) is free from conical singularities if the period of  
is chosen to be � � 2�. Thus the local metric is regular
everywhere in B6 if we restrict a 2 �0; 1� and y 2 �y1; y2�.
These choices also ensure that the warp factor w � y does
not vanish or diverge, which would have led to singularities
in the full ten-dimensional solution.

We now turn to showing that the full metric (3) is
consistent with M7 being a U�1� bundle over B6.
Observe first that the norm of the Killing vector @z never
vanishes (or diverges) and so the size of the S1 fiber is
always finite. Let us write Dz � dz� A and denote the
period of z by �z � 2�l. For the metric to be well defined
the rescaled one form l�1Amust be a connection on a bona
fide U�1� fibration. This is equivalent to the condition that
the corresponding first Chern class 1

2� l
�1dA lies in the

integer cohomology H2
de Rham�B6;Z�. [Generically, the first

Chern class may include torsion elements inH2�B6;Z�, but
as discussed in [9], here �1�B6� � 0 so there is no torsion
and H2�B6;Z� 	 H2

de Rham�B6;Z�.] We observe first that

 dA � g�y�J� g0�y�dy ^D (9)

is a globally defined two form on B6: the first term is a
smooth polynomial times the globally defined Kähler form,
and the second is a smooth polynomial times dy ^D .
The latter two form could only be singular at the roots y1,
y2, but near those points it is approximately rdr ^ d ,
which is the volume form on R2 in polar coordinates.

The condition that the first Chern class is in
H2

de Rham�B6;Z� is equivalent to requiring that the corre-
sponding periods are integral, that is,

 P�C� �
1

2�

Z
C
l�1dA1 2 Z; (10)

for any curveC 2 H2�B6;Z�. To check this we need a basis
of the free part of H2�B6;Z�. In fact, such a basis is
described in [9] in a very similar setting. Let f�ag be a
basis for the free part of H2�KE4;Z�. Then the fC0; Cag
form a basis of the free part ofH2�B6;Z�, where we take C0

to be the fiber S2 at a fixed point in the KE4 base space, and
fCag to be the two-cycles f�ag sitting at one of the poles of
the S2, say, y � y1. We find that

 P�C0� � l�1�g�y2� � g�y1��; P�Ca� � l�1g�y1�mna;

(11)

wherem and na are integers related to L, the canonical line
bundle of KE4. (One might also consider the periods over
two-cycles at the other pole f ~Cag; however, these are not
independent, since the S2 fibration is such that as homol-
ogy classes ~Ca � Ca �mnaC0.) Specifically, m is the
largest positive integer m (known as the Fano index) for

which there is a line bundle N such that L �N m, and na
are the periods na �

R
�a
c1�N � of the Chern class of N .

By construction the na are coprime. [In what follows it is
useful to also write the homology class �N , the Poincaré
dual of c1�N �, as �N � sa�a. Again by definition the sa

are coprime.] It is then easy to see that the periods P�C� are
integer if and only if

 g�y2� � g�y1� � lq; g�y1� � lp=m; (12)

for some integers p, q 2 Z. If p and q are relatively prime,
the periods have no common factors and M7 is simply
connected. Note that in general g�y2�=g�y1� � �p�
mq�=p is rational.

To analyze these conditions it is convenient to introduce
a different variable, x � �4y� a�=3a, in terms of which
the cubic polynomial reads

 q�y�x�� �
a2

16
�a�1� 3x�3 � �1� 9x�2�: (13)

Some algebra then leads to

 

�����������
x�y1�

q
� �1� 2g�y2�

g�y1�
��1: (14)

It can be checked that for any a 2 �0; 1�, the location of the
first root is such that x�y1�< 1=9, and so the condition (14)
implies that we can take p; q > 0. Using (13) we find that
the parameter a must be rational and of the form

 a �
m2q2�3p�mq�2�3p� 2mq�2

4�3p2 � 3mpq�m2q2�3
(15)

and

 l �
2�3p2 � 3mpq�m2q2�m

3p�p�mq��2p�mq�
: (16)

To summarize, we have shown that for each pair of
integers p, q with p; q > 0, the background (2), (3), and
(5) gives a regular supersymmetric type IIB supergravity
solution with compact M7 provided that the parameter a
and the parameter fixing the period of the z circle are given
by (15) and (16), respectively. If p and q are coprime, M7

is simply connected.
Flux quantization and central charge.—To ensure that

we have a good solution of string theory we need to show
that the five-form flux is globally defined on M7 and
furthermore is quantized. The appropriate quantization
condition is that the periods of F5 are integers:

 N�D� �
1

�2�ls�
4

Z
D
F5 2 Z; (17)

for any five-cycle D 2 H5�M7;Z�, where ls is the string
length.

Recall that we already argued that dy ^D is globally
defined, as is dy since it is proportional to rdr at the roots
y1 and y2, while by definition J and Dz are global forms.
Given the expression (6), we immediately see that F5 is
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globally defined. To check that the periods are quantized
we need a basis for the free part of H5�M;Z�. Note first
that a basis for the free part of H4�B6;Z� is given by a
section of the S2 bundle over KE4, say, at y1 or y2 together
with the S2 fibrations over each basis two-cycle �a 2
H2�KE4;Z�. Since the U�1� bundle over B6 is nontrivial,
all nontrivial five-cycles come from the U�1� fibration over
a four-cycle in B6. Let us label these as follows:D0 denotes
the five-cycle arising from the section y � y1, ~D0 is the
cycle corresponding to y � y2, and Da the cycle arising
from �a. Note that these cycles are not independent. From
the S2 fibration structure of B6 we have D0 � ~D0 �
msaDa, while, using similar arguments to those in the
appendix of [12], the U�1� fibration is such that q ~D0 �
psaDa � 0. The periods of F5 are given by
 

N�D0� � �

�
3L4

64�l4sgs

��
m

p�p�mq�

�
M�p�mq�;

N� ~D0� � �

�
3L4

64�l4sgs

��
m

p�p�mq�

�
Mp;

N�Da� �

�
3L4

64�l4sgs

��
m3

p�p�mq�

�
qna;

(18)

where M is a positive integer depending on the choice of
KE4, given by

 M�
Z

KE4

c1�L� ^ c1�L� �
1

4�2

Z
KE4

R^R�m2sana:

These expressions reflect the relations between the five-
cycles mentioned above. The flux quantization condition,
which is a quantization for the possible AdS3 radii in string
units, is thus

 

3L4

64�l4sgs
�
p�p�mq�

hm3 n; (19)

where n is an arbitrary integer, we are assuming that p and
q are coprime and recall that h � hcffM=m2; qg.

Since the solutions have only nonvanishing five-form
flux, it is natural to interpret them as the near horizon limit
of some configuration of wrapped and/or intersecting D3-
branes after taking into account their backreaction. The
minimal value of n � 1 would then naturally correspond to
the minimal configuration of D3-branes, with higher values
of n corresponding to the backreacted geometries of n
coincident configurations of such D3-branes. From (19)
we see that, as is standard in the AdS/CFT correspondence,
for finite p and q, one can have small gs together with
small curvatures only if n
 1.

Having established all the conditions for our solutions to
be proper string theory backgrounds, we now calculate the
central charge of the dual conformal field theories. It is
well known [14] that the central charge c is fixed by the
AdS3 radius L and the Newton constant G�3� of the effec-
tive three-dimensional theory obtained by compactifying
type IIB supergravity on M7:

 c �
3L

2G�3�
: (20)

In our conventions, the type IIB supergravity Lagrangian
reads

 

1

�2��7g2
sl

8
s

���������������
� detg

p
R� � � � : (21)

Integrating this term over M7 gives the effective G�3� and
hence the rational central charges given in (1). Note that
the n dependence of (1) is consistent with the comment that
the solution describes n copies of a minimal D3-brane
configuration, the n2 degrees of freedom arising from
open strings ending on the n branes.

The solutions with KE�4 � CP2 or S2 � S2 have global
symmetries that include a U�1� �U�1� factor that leaves
the Killing spinors invariant. As a consequence the dual
CFTs will have exactly marginal � deformations for which
corresponding supergravity solutions can be constructed
using the technique of [15]. The CFTs dual to the solutions
with KE�4 � dPk with k > 4 have exactly marginal defor-
mations corresponding to the deformations of the complex
structure of dPk. Thus the only potentially isolated CFTs
are those dual to the solutions with KE�4 � dP3 and dP4.
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