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The Schur basis on n d-dimensional quantum systems is a generalization of the total angular
momentum basis that is useful for exploiting symmetry under permutations or collective unitary rotations.
We present efficient {size poly�n; d; log�1=��� for accuracy �g quantum circuits for the Schur transform,
which is the change of basis between the computational and the Schur bases. Our circuits provide explicit
efficient methods for solving such diverse problems as estimating the spectrum of a density operator,
quantum hypothesis testing, and communicating without a shared reference frame. We thus render
tractable a large series of methods for extracting resources from quantum systems and for numerous
quantum information protocols.
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A key component of quantum algorithms is their ability
to reveal information stored in nonlocal degrees of free-
dom. In particular, one of the most important building
blocks known is the quantum Fourier transform (QFT)
[1], an efficient circuit construction for conversion between
discrete position and momentum bases. The QFT converts
a vector of 2n amplitudes in O�n2� steps, in contrast to the
O�n2n� steps required classically.

Another elementary basis change important in quantum
physics is between independent local states and those of
definite total generalized angular momentum. When two
identical spin-1=2 particles interact with a global excita-
tion, due to their permutation symmetry they appear as a
singlet or a triplet to the external interaction. When this
basis is generalized to n d-dimensional systems (n ‘‘qu-
dits’’), we call it the Schur basis and call the unitary
transformation between local and Schur bases the Schur
transform.

The Schur transform is central to a plethora of quantum
information protocols and to many optimal physical meth-
ods for extracting information or resources from a quantum
system. These include methods to estimate the spectrum of
a density operator [2], perform quantum hypothesis testing
[3], perform universal quantum source coding [4], concen-
trate entanglement noiselessly [5], create states immune to
collective decoherence [6], and communicate without a
shared reference frame [7]. For all of these tasks (and
others), inefficient protocols also exist that work in local
bases; however, only the protocols using the Schur basis
are optimal. This suggests that the Schur basis is a natural

way to treat quantum states based on independent and
identically distributed random variables, i.e., to experi-
ments in which many copies of a single quantum state
are given. However, unlike the QFT, no efficient algorithm
for the Schur transform has been found, rendering proto-
cols which use it nonconstructive. If we wish to implement
the Schur transform in the lab to solve any of the problems
listed above, an explicit efficient circuit construction for
the Schur transform is needed.

Here, we resolve this problem by giving an efficient
construction of the Schur transform on n qudits, for arbi-
trary n and d. This is achieved using a quantum circuit of
size poly�n; d; log�1=��� for accuracy �. We believe that
this basis change is important not only for quantum infor-
mation and useful for extracting information about physi-
cal systems, but also as a new building block for future
quantum algorithms.

The Schur transform.—Consider a system of n qudits,
each with a standard local (‘‘computational’’) basis jii, i �
1 . . . d. The Schur transform relates transforms on the
system performed by local d-dimensional unitary opera-
tions to those performed by permutation of the qudits.
Recall that the symmetric group Sn is the group of all
permutations of n objects. This group is naturally repre-
sented in our system by

 P ���ji1i2 � � � ini � ji��1�1�i��1�2� � � � i��1�n�i; (1)

where � 2 Sn is a permutation and ji1i2 . . .i is shorthand
for ji1i � ji2i � . . . . Let Ud denote the group of d	 d
unitary operators. This group is naturally represented in
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our system by

 Q �U�ji1i2 � � � ini � Uji1i �Uji2i � � � � �Ujini; (2)

where U 2Ud.
The Schur transform is based on Schur duality, a well-

known [8] and powerful way to relate the representation
theory of P��� and Q�U�. For example, consider the case
of two qubits (n � 2, d � 2). The two-qubit Hilbert space
�C2��2 decomposes under Q into a one-dimensional spin-0
singlet space spanned by 1��

2
p �j01i � j10i� and a three-

dimensional spin-1 triplet space spanned by j00i, j11i,
and 1��

2
p �j01i 
 j10i�. Both of these spaces are acted upon

in an irreducible manner under the action of Q�U�, U 2
U2, meaning that the action of Q�U� does not mix these
two subspaces and these are the minimal such nonmixing
subspaces which exist. Schur duality is related to the fact
that these subspaces also happen to be irreducible repre-
sentations (irreps) of S2. The singlet state changes sign
under permutation of the two spins, and the triplet states
are invariant under permutation. These correspond to the
sign P sign and the trivial P trivial irreps of S2, and thus we
can write �C2��2 � �Q1 � P trivial� � �Q0 � P sign�, where
Qj is the spin-j irrep of U2.

This relation between the two representations exists for
an arbitrary number of qudits, and in general both the Ud
and Sn irreps will be nontrivial. For example, the Hilbert
space of three qubits (n � 3, d � 2) decomposes into
�Q3=2 � P trivial� � �Q1=2 � P 2;1�, where P 2;1 denotes a
particular two-dimensional mixed symmetry irrep of S3.
In terms of the original (local) basis the Q1=2 � P 2;1 space
contains two spin-1=2 objects, one spanned by j110i 

!j011i 
!j101i (suppressing normalization) and
j001i 
!j100i 
!j010i, and the other obtained by re-
placing ! � e2�i=3 with !. These two spaces correspond
to the two dimensions of P 2;1.

The general theorem of Schur duality states that for any
(integer) d and n,

 �Cd��n �
M

�2Part�n;d�

Q� � P �; (3)

where � is chosen from the set of possible partitions of n
into� d parts, and simultaneously labels the Ud-irrep Q�
and the Sn-irrep P �. This goes beyond simultaneously
diagonalizing the commuting representations P and Q
because P � depends only on n (through �) and not d.
Schur duality means that there exists a basis for �Cd��n

with states j�; q�; p�iSch, where � labels the subspaces
Q� � P � and jq�i 2Q� and jp�i 2 P � label bases for
Q� and P �, respectively.

Just as in the examples above, the Schur basis states
j�; q�; p�iSch are superpositions of the n qudit computa-
tional basis states ji1i2 . . . ini,

 j�; q�; p�iSch �
X
i1;...;in

�USch�
�;q�;p�
i1;i2;...;in

ji1i2 � � � ini: (4)

By the isomorphism of Eq. (3), this defines a unitary
transformation USch (with matrix elements as given), the
Schur transform we desire. If we think of USch as a quan-
tum circuit, it maps the state j�; q�; p�iSch into the compu-
tational basis state j�; q�; p�i, with �, q�, and p� expressed
as bit strings. Since dim�Q�� and dim�P �� vary with � we
need to pad the jqi and jpi registers; this requires only
constant spatial overhead. We know of no efficient classi-
cal algorithms to calculate even a single matrix element of
USch, the best known results being recursive definitions of
these matrix elements which require exponential time to
evaluate [9]. The main purpose of this Letter is to show
how the entire transformation can be performed on a
quantum computer in poly�n; d� steps {implying as a cor-
ollary a classical algorithm for Schur transforming a vector
of length dn in time O�dnpoly�n; d��g.

The defining property of USch is that it reduces the action
of Q and P into irreps. For any � 2 Sn and any U 2Ud,
P��� and Q�U� commute, so we can express both reduc-
tions at once as

 U SchQ�U�P���UySch �
X

�2Part�d;n�

j�ih�j � q��U� � p����;

(5)

where q� and p� are irreps of Ud and Sn, respectively.
Example of the Schur transform.—Consider the case of

two qubits (n � 2, d � 2). Here the Schur transform is the
transform between the standard computational basis ji1; i2i
and a basis describing the singlet and triplet states.
Explicitly the matrix of elements for the Schur transform,
as in Eq. (4), are given by

 

j� � �1; 1�; q� � 0; p� � 0iSch

j� � �2; 0�; q� � 
1; p� � 0iSch

j� � �2; 0�; q� � 0; p� � 0iSch

j� � �2; 0�; q� � �1; p� � 0iSch

8>>><>>>:
0 1��

2
p � 1��

2
p 0

1 0 0 0
0 1��

2
p 1��

2
p 0

0 0 0 1

26664
37775

z�����������������}|�����������������{j00i j01i j10i j11i

:

(6)

Here � � �1; 1� labels the singlet and � � �2; 0� labels the
triplet. In this simple case, the permutation irreps are both
one dimensional. Further as noted above, when we imple-
ment this we must express the label �, p�, q� in terms of bit
strings from some computational basis. For example, we
could label � by a single qubit and q� by two qubits (no
qubits are required for p� in this example).

Applications of the Schur transform.—The numerous
applications of the Schur transform mentioned in the in-
troduction [2–7] solve a variety of problems which are
relevant to quantum information theory as well as to ex-
periments designed to acquire information or resources
from a quantum system. Applying the Schur transform
extracts �, q, and p values for a given state, allowing the
values be manipulated like any other quantum data. Here
we briefly review a few of these applications, focusing on
the ones most relevant to physics.
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One application of the Schur transform is spectrum
estimation [2]. In spectrum estimation, we are given access
to n copies of a density operator � �

P
ipijiihij. Suppose

the experimentalist wishes to estimate the values of the
eigenvalues pi but does not know the basis jii. Using the
Schur transform is the optimal method for estimating this
spectrum for any value of n. In particular, if we are given
��n, then performing the Schur transform on this state
followed by measuring the irrep label � provides an esti-
mate of the spectrum by taking the partition � �
��1; �2; . . . ; �d� and dividing each �i by n: pi �
��1

n ;
�2

n ; . . . ; �dn �. In the limit of large n this estimate is
optimal [2].

Consider, for example, spectrum estimation for the n �
2, d � 2 example given above. Let � � pj0ih0j 
 �1�
p�j1ih1j be a fixed state and assume the experimentalist
does not know the basis j0i, j1i. In order to estimate this
spectrum if we are given two copies of �, we perform the
Schur transform, Eq. (6), on these two qubits and measure
the � register. If we get � � �2; 0� we estimate that the
spectrum is that of a pure state p1 � 1, p2 � 0 and if we
get � � �1; 1� we estimate that the spectrum is that of the
fully mixed state p1 �

1
2 , p2 �

1
2 . For a given value of p,

the � � �2; 0� case occurs with probability 1� p�1� p�,
and the � � �1; 1� case occurs with probability p�1� p�.
Note that only if p � 0 or 1 does this estimate exactly
reproduce the spectrum. Hence we learn a little about the
spectrum with two copies of �; note that what we have
learned is independent of the basis j0i, j1i. In the limit of a
large number of copies, n� 1, the Schur transform pro-
vides the optimal estimate of the spectrum.

Another application of the Schur transform is to encode
quantum information into noiseless subsystems which
arise due to collective decoherence [6]. Here we run the
Schur transform backwards (this can be done for the circuit
by applying the inverse of every gate and reversing the
order of the gates). If we input into the inverse Schur
transform a fixed label j�i, some arbitrary information in
the jq�i register, and the information we wish to encode in
a noiseless manner into the jp�i basis, then the n qudit
states output from this transform are encoded in a noiseless
manner. In particular, the effect of decoherence which
couples identically to each of the n qudit states acts trivi-
ally on the encoded information. Noiseless subsystems
have already been implemented in ion trap quantum com-
puters [10] and our transform makes feasible their use for
larger systems.

As an example of the Schur transform in quantum
information theory, consider the situation where Alice
and Bob share n copies of a partially entangled state
j iAB �

P
i
�����
pi
p
jiiAjiiB and they wish to extract the maxi-

mal number of maximally entangled states, 1����
dE
p 	PdE

k�1 jiiAjiiB, from these n copies. Alice and Bob’s local
density matrices are invariant under permutations of their n
copies, so if they perform the Schur transform and measure
the j�i basis, this leaves their jp�i registers in a maximally

entangled state. If j i is unknown and no classical com-
munication is allowed, then this is an optimal distortion-
free entanglement protocol [5]. Note that in order to make
this protocol computationally tractable, we need to de-
scribe how the jp�i basis states are labeled in a way that
can be efficiently and reversibly mapped to the integers
f1; . . . ; dim�P ��g [11].

Quantum circuit for the Schur transform.—We construct
a quantum circuit [12] for USch in two stages, first for d �
2, then generalizing to d > 2. Each of these constructions
follows an iterative structure, in which the Schur transform
on n qudits is realized using n elementary steps, each of
which adds a single qudit to an existing Schur state of the
form j�; q; pi.

For d � 2, this elementary step corresponds to the addi-
tion of angular momentum, and the matrix elements of the
unitary transform are known as Clebsch-Gordan (CG) co-
efficients [13]. In this case, � and q can be conveniently
denoted by half integers j and m (with jmj � j � n=2)
which give the total angular momentum and the
z-component of angular momentum, respectively. And in
terms of j, the CG transform takes as input jj;mi and a
single spin js � �1=2i, and outputs a linear combination
of the states jj0 � j� 1=2; m0 � m
 si. The amplitudes
of the linear combination are readily computed using the
usual ladder operators for raising and lowering angular
momenta [13]. In addition, however, we must distinguish
between multiple distinct pathways which add up to give
the same total j, as demonstrated by the three qubit ex-
ample above. In fact, it is the permutation symmetry of
these pathways which gives rise to P j, and thus we track
the pathway with another output label p � j0 � j.

Putting this together, we can define an elementary
Clebsch-Gordan transform step UCG as a rotation between
two specific basis states,

 

jj0�; m
0; p � �1

2i

jj0
; m
0; p � 
1

2i

" #
�

cos�j;m0 � sin�j;m0
sin�j;m0 cos�j;m0

" #

	
jj; m
ijs � �

1
2i

jj; m�ijs � 

1
2i

" #
; (7)

where j0� � j� 1=2, m� � m0 � 1=2, and cos�j;m0 ������������������
j
m0
1=2

2j
1

q
. UCG can be realized with three gates in a

quantum circuit, as shown in Fig. 1, using as one gate a
controlled rotation about ŷ by angle �j;m0 . This angle is
computed using usual quantum and reversible circuit tech-
niques [12] with error �, using poly�log�1=��� standard
circuit elements.

The full Schur transform is implemented by cascading
UCG as shown in Fig. 2. The complexity of this circuit is
thus O�npoly log�1=���. We now claim that
jp1; . . . ; pni :� jpi labels a basis for P j. This follows
from Eq. (3) and the fact that the pk � jk � jk�1, k �
1; . . . ; n are invariant under Q, while j and m are invariant
under P. In fact, since jk describes the action of Sk on the
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first k qubits, jp1; . . . ; pni is a subgroup-adapted basis for
the chain S1 � S2 � . . . � Sn, also known as Young’s
orthogonal basis [14]. This basis is also used in the only
known fast quantum Fourier transform over Sn [14,15].

Construction of the Schur transform for d > 2 follows
the same ideas as for d � 2, but is complicated by the
challenge of showing that the elementary UCG steps for
d > 2 can be computed in poly�d� steps [a direct construc-
tion along the lines of Eq. (7) would require nO�d� steps].
USch is constructed as a cascade of O�n� UCG transforms,
just as for d � 2. Each UCG combines a state j�; q�i [with
� 2 Part�d; k� 1� and jq�i 2Q�] with a single qudit
state jiki, to obtain a superposition of states j�0; q0�0 i
[with �0 2 Part�d; k� and jq0�0 i 2Q�0]. Simultaneously,
the permutation labels jpi are constructed; equivalently,
we could save the values of � that we generate in each step,
just as p1; . . . ; pn are equivalent to j1; . . . ; jn for d � 2.
UCG can be computed efficiently because of a recursive
relationship between UCG for Ud 	Ud and that of
Ud�1 	Ud�1 in terms of reduced Wigner coefficients
[16]. Crucially, there is an efficient classical algorithm
for the computation of the reduced Wigner coefficients
[9] needed for UCG. Specific details of this calculation
are given in detail elsewhere [11]. The complexity of the
full Schur transform is thus found to be polynomial in n, d,
and log���1�.

Conclusion.—We have shown how to efficiently per-
form the Schur transform. Without efficient implementa-
tions of the Schur transform, the various physical and
quantum information tasks we have discussed [2–7] are
not practical in the lab. As a final note, we comment on the
Schur transform as it relates to the search for new quantum
algorithms. An important open problem here is to find a
black-box problem for which the Schur transform offers a
speedup over classical algorithms. In this respect, there are
few unitary transforms which have both an efficient quan-
tum circuit and interpretations which might allow these
transforms to be useful in an algorithm. We are hopeful that
our circuits will be useful for quantum algorithms exactly

because they have such clear group representation theory
interpretations.
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|p1

|i1

UCG

|p2

|i2 · · ·

|i3 · · · . . .
. . . · · ·

UCG

|pn

· · · |J

|in |m

FIG. 2. Quantum circuit for the Schur transformation USch,
transforming between ji1i2 � � � ini and jj;m; pi. The fact that
the jp1; p2; . . . ; pni is a full basis is intimately related to Schur
duality.

|J / • X |J

|m / X • |m

|s • Ry (θJ, m ) • |p

FIG. 1. Quantum circuit implementing UCG to convert be-
tween the jj;mijsi and jj0; m0; pi bases, for the d � 2 (qubit)
case. Following standard conventions [12], time goes from left to
right, the jji and jmi wires hold multiple qubits, and jsi is one
qubit. The controlled X operation CX adds the control to the
target qubits, i.e., CXjsijmi � jsijm
 si. The doubly controlled
Ry��j;m0 � gate implements the rotation given by Eq. (7) using the
j and m0 qubits.
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