
Maximally Nonlocal and Monogamous Quantum Correlations

Jonathan Barrett,1 Adrian Kent,2 and Stefano Pironio3

1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
2Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, United Kingdom
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We introduce a version of the chained Bell inequality for an arbitrary number of measurement outcomes
and use it to give a simple proof that the maximally entangled state of two d-dimensional quantum
systems has no local component. That is, if we write its quantum correlations as a mixture of local
correlations and general (not necessarily quantum) correlations, the coefficient of the local correlations
must be zero. This suggests an experimental program to obtain as good an upper bound as possible on the
fraction of local states and provides a lower bound on the amount of classical communication needed to
simulate a maximally entangled state in d� d dimensions. We also prove that the quantum correlations
violating the inequality are monogamous among nonsignaling correlations and, hence, can be used for
quantum key distribution secure against postquantum (but nonsignaling) eavesdroppers.
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Quantum theory predicts that measurements on sepa-
rated entangled systems will produce outcome correlations
that, in Bell’s terminology [1], are not locally causal or, in
what has become standard terminology, are nonlocal. In
particular, if a Bell inequality is violated, then one cannot
consistently assume that the outcomes of measurements on
each system are predetermined and independent of the
measurements carried out on the other system(s). Viola-
tion of Bell inequalities has been confirmed in numerous
experiments [2].

Violation of Bell inequalities not only tells us something
fundamental about nature but also has practical applica-
tions. For example, the nonlocality of quantum correlations
allows communication complexity problems to be solved
using an amount of communication that is smaller than is
possible classically [3]. Barrett-Hardy-Kent (BHK) re-
cently showed that testing particular nonlocal quantum
correlations allows two parties to distribute a secret key
securely, in such a way that the security is guaranteed by
the no-signaling principle alone [4] (i.e., without relying on
the validity of quantum theory).

In this Letter, we extend the chained Bell inequality to
an inequality with an arbitrary number of measurement
outcomes, which can thus be applied to states in arbitrary
dimensions. In the limit of a large number of measurement
settings, quantum mechanics predicts correlations for a
maximally entangled bipartite state that resemble those
of the tripartite Greenberger-Horne-Zeilinger (GHZ) state
in that, with probability tending to one, the predictions of
any local hidden variable model contradict those of quan-
tum mechanics for at least one pair of measurements. We
use this to give a constructive proof of a result originally
due to Elitzur, Popescu, and Rohrlich (EPR) [5]: If the
quantum correlations of a maximally entangled state of
two qubits are written as a convex combination of local and

nonlocal correlations, then the local fraction must be zero.
Our proof extends EPR’s result to maximally entangled
states in any dimension and also removes the need for a
technical assumption required for EPR’s original proof [6].
Moreover, because our proof is constructive, it motivates
an experimental program to establish the best possible
upper bound on the fraction of local states in a maximally
entangled state. More generally, our proof method works,
and motivates experimental tests, for any example of GHZ-
type correlations.

Next, we give a rigorous proof of the monogamy of the
correlations obtained from a d� d-dimensional maxi-
mally entangled state. Here monogamy means that a third
party cannot get any information about the measurement
outcomes, so long as a no-signaling condition holds, even
if quantum theory is incorrect. This property has a particu-
lar significance in the context of secret key distribution,
and our results here generalize those of BHK [4], which
proved monogamy in the 2� 2-dimensional case in order
to demonstrate the security of BHK’s scheme against
general nonsignaling eavesdroppers.

Finally, as a corollary, we derive a lower bound on the
classical communication needed to simulate measurements
on a maximally entangled state in d� d dimensions.

Some chained Bell inequalities.—Consider a standard
Bell-type experiment: Two parties, Alice and Bob, share a
joint system in an entangled quantum state and perform
measurements on their local subsystems. Each party may
choose one out of N different measurements, and each
measurement Ak of Alice and Bl of Bob (k; l � 1; . . . ; N)
may have d possible outcomes: Ak; Bl � 0; . . . ; d� 1.
Quantum theory predicts the joint probabilities PQM�Ak �
a; Bl � b� that Alice’s and Bob’s measurements, Ak and
Bl, have the respective outcomes a and b. The correlations
predicted by quantum theory are local if and only if they
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can be written in the form

 PQM�Ak � a; Bl � b� �
X
�

q�P��Ak � a� � P��Bl � b�;

(1)

with 0 � q� � 1 and
P
�q� � 1. Without loss of general-

ity, we can assume that the terms P��Ak � a� and P��Bl �
b� are deterministic, that is, that they take only the values 0
or 1 [7]. The correlations are thus local if and only if they
can be reproduced by a mixture of hidden states assigning
definite values to each measurement. Violation of a Bell
inequality implies that the correlations cannot be written in
this form.

In general, one can write the correlations as
 

PQM�Ak � a; Bl � b� � pPL�Ak � a; Bl � b�

� �1� p�PNL�Ak � a; Bl � b�;

(2)

where PL�Ak � a; Bl � b� represent local joint distribu-
tions of the form (1) and PNL�Ak � a; Bl � b� nonlocal
ones not necessarily of that form. In the above mixture, p
and �1� p� are the respective weights of the local and
nonlocal distributions, with 0 � p � 1. Suppose now that
we have a set of quantum correlations which satisfy some
relation with certainty, and we can show that any local
model must fail to satisfy the relation at least some of the
time. It follows that the correlations cannot be written in
the form of Eq. (2) except with p � 0. [Note that this is
true even if the term PNL�Ak � a; Bl � b� is allowed to
describe signaling correlations.] A particularly well-known
example of such correlations was that produced by GHZ
[8] and simplified by Mermin [9]; hence, we refer to
correlations with these properties as GHZ-type correla-
tions. Bipartite examples have been given by Heywood
and Redhead [10] and Cabello [11]. A set of quantum
correlations is of GHZ-type if and only if it has an asso-
ciated Bell inequality which is violated right up to the
algebraic limit of the expression.

We now derive a Bell inequality and show that, in the
limit of a large number of measurement settings, the quan-
tum correlations from a maximally entangled state violate
the inequality up to the algebraic limit. Thus, the quantum
correlations tend to GHZ-type as the number of measure-
ment settings becomes large. Hence, we show, maximally
entangled states in any dimension have zero local
component.

Consider first the case where Alice and Bob each have a
choice between two different measurements (N � 2).
Local correlations satisfy the following inequality [12]:
 

I2 � h�A1 � B1	i � h�B1 � A2	i � h�A2 � B2	i

� h�B2 � A1 � 1	i 
 d� 1; (3)

where hXi �
Pd�1
i�1 iP�X � i� is the average value of the

random variable X 2 f0; . . . ; d� 1g and �X	 denotes X
modulo d. This follows from the identity

 �A1 � B1 � B1 � A2 � A2 � B2 � B2 � A1 � 1	 � d� 1

(4)

and the relation �X	 � �Y	 
 �X� Y	. When d � 2, it
corresponds to the Clauser-Horne-Shimony-Holt inequal-
ity [13].

We can extend the above inequality to an arbitrary
number N of measurement choices:

 IN � h�A1 � B1	i � h�B1 � A2	i � h�A2 � B2	i

� � � � h�AN � BN	i � h�BN � A1 � 1	i


 d� 1: (5)

This extended inequality can be viewed as a chained
version of inequality (3) and follows by a similar argument.
It is equivalent, when d � 2, to the chained inequality
introduced by Pearle [14] and Braunstein and Caves [15].
The relation between the Pearle-Braunstein-Caves inequal-
ity and GHZ-type correlations was first pointed out by
Hardy [16].

We now show that, if Alice and Bob share the maximally
entangled state

 j di �
1���
d
p

Xd�1

q�0

jqiAjqiB; (6)

there exist measurement settings such that, for large N,
IN�QM� tends to zero. The maximally entangled state j di
has the property that, if Alice measures an observable with
eigenvectors jri (r � 0; . . . ; d� 1) and Bob measures the
observable with complex conjugate eigenvectors jri�, they
get perfectly correlated outcomes. We define the eigenvec-
tors characterizing Alice’s measurement Ak as

 jriAk �
1���
d
p

Xd�1

q�0

exp
�

2�i
d
q�r� �k�

�
jqiA; (7)

and those characterizing Bob’s measurement Bl as

 jriBl �
1���
d
p

Xd�1

q�0

exp
�
�

2�i
d
q�r� �l�

�
jqiB; (8)

where �k � �k� 1=2�=N and �l � l=N.
A straightforward calculation shows that each term in

(5) is equal to �=N2 �O�1=N3�, where � � �2=�4d2��Pd�1
j�1 j=sin2��j=d�. As there are 2N such terms in the

inequality (5), it follows that

 IN�QM� � 2�=N �O�1=N2�; (9)

which can be made arbitrarily small for sufficiently large
N.

For any particular finite value of N, the quantity IN�QM�
implies an upper bound on the fraction of local states in any
model that reproduces the correlations, i.e., an upper bound
on the p of Eq. (2). This is because, although the term
PNL�Ak � a; Bl � b� can violate the Bell inequality (5), it
must satisfy IN�NL� 
 0, since each term in (5) is a
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positive quantity. Thus, we can write IN�QM� � pIN�L� �
�1� p�IN�NL�, and, since IN�L� 
 d� 1 and IN�NL� 

0, IN�QM� 
 p�d� 1�, or

 p �
IN�QM�

d� 1
: (10)

Of course, in a real experiment, the state prepared will not
be precisely (6), the measurements will not be precisely
defined by projections onto the vectors (7) and (8), and so
on, and thus the experimentally determined value IN�EXP�
will generally be greater than IN�QM�. Nonetheless, given
a value for IN�EXP�, we can obtain a bound of the form

 p �
IN�EXP�

d� 1
: (11)

Hence, we propose an experimental challenge: to obtain
the lowest possible bound on p (for any d and N) for
bipartite maximally entangled states.

Our proof extends to any example of GHZ-type corre-
lations; thus, another natural challenge is to obtain the
lowest possible bound on p for any set of quantum corre-
lations on any bipartite or multipartite entangled state.

Indeterminacy of the measurement outcomes and mo-
nogamy.—The correlations that we just introduced have a
particular significance in the context of key distribution.
BHK showed [4] how nonlocal correlations can be used as
the basis of a key distribution scheme that is secure against
nonsignaling eavesdroppers. Nonlocal correlations can
also be used to give at least partial security against non-
signaling eavesdroppers in more practical quantum key
distribution schemes [17,18]. In these discussions, it is
not assumed that such eavesdroppers are constrained by
the laws of quantum mechanics, but it is assumed that they
can prepare systems only in states whose correlations are
nonsignaling, in the following sense. Suppose that Alice
and Bob share a bipartite system characterized by correla-
tions P�Ak � a; Bl � b�. The correlations are nonsignal-
ing if they satisfy

 

X
a

P�Ak � a; Bl � b� �
X
a0
P�Ak0 � a0; Bl � b�; (12)

for all k, k0, l, b, and a similar set of conditions obtained by
summing over Bob’s input. These no-signaling conditions
ensure that the marginal distributions P�Ak � a� and
P�Bl � b� are well defined quantities. The definition of
no-signaling can be extended to more than two parties, by
requiring a condition similar to (12) for every possible
grouping of the parties into two subsets.

In the protocols of Refs. [4,17,18], maximally entangled
states are prepared by a source, which is situated between
Alice and Bob and assumed to be under control of the
eavesdropper Eve. On each pair of particles, Alice and Bob
perform measurements Ak and Bl, chosen independently
and randomly, and use the corresponding measurement
outcomes to establish a shared secret key.

If the correlations used to distribute the key admit a
model with fractions p and 1� p of local and nonsignal-

ing nonlocal states, respectively, then for a fraction p of
pairs, Eve could prepare a deterministic local state that
would give her complete information about Alice’s and
Bob’s measurement outcomes. This strategy is clearly not
significantly useful to Eve if the quantum correlations
imply p 
 0, which is the case in BHK’s protocol [4], as
noted above.

However, a zero fraction of local states does not neces-
sarily imply that Eve’s information is zero, as it does not
exclude the possibility that she could prepare a nonlocal
state that has definite values for a nonempty proper subset
of the measurement inputs. For instance, in the case of
Cabello’s example [11], there is a model reproducing the
quantum correlations with the following properties:
(i) Every hidden state is nonsignaling; (ii) for every hidden
state, at least one measurement has a predetermined out-
come; (iii) each measurement has a predetermined out-
come for at least some finite fraction of the hidden states. A
nonsignaling Eve exploiting this model could obtain some
knowledge of Alice’s and Bob’s measurement outcomes.
Similar remarks apply to the GHZ and Mermin examples.

The correlations defined by (6)–(8), however, are
stronger in the sense that any nonsignaling model that
reproduces the correlations has the following property:
For every hidden state, the outcomes of any measurement
are completely undetermined and occur all with the same
probability 1=d. This property is implied by the following
theorem.

Theorem.—Any no-signaling distribution yielding a
value IN for the chained expression (5) less than some
constant I�N , i.e., for which IN � I�N , satisfies

 P�Ak � a� �
1

d
�
d
4
I�N and P�Bl � b� �

1

d
�
d
4
I�N

for all measurements Ak and Bl and for all outcomes a and
b.

In the limit I�N!0, Eve cannot therefore gain any knowl-
edge about Alice’s and Bob’s measurement outcomes. In
other words, the tripartite distribution describing Alice’s,
Bob’s, and Eve’s measurement results is of the form
P�Ak � a; Bl � b�P�Em � e� for every pair of measure-
ments (Ak, Bl) used in the chained inequality (5). We say
that Alice’s and Bob’s correlations are monogamous, in ob-
vious analogy with the familiar monogamy of
entanglement.

Proof.—Suppose that P�Ak � a�> 1=d� d=4I�N for
some measurement Ak and outcome a. We will then
show that IN > I�N. [The same argument applies if we
suppose that P�Bl � b�> 1=d� d=4I�N for some mea-
surement Bl and outcome b.]

Defining AN�1 � A1 � 1 (modulo d), we can write
 

IN �
XN
j�1

�h�Aj � Bj	i � h�Bj � Aj�1	i�


 2N �
XN
j�1

�P�Aj � Bj� � P�Aj�1 � Bj��; (13)
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since h�X	i �
Pd�1
i�1 iP��X	 � i� 
 1� P��X	 � 0�. Now

 

P�Ai � Bj� �
Xd�1

r�0

P�Ai � r; Bj � r�

� min�P�Ai � q�; P�Bj � q��

�min�1� P�Ai � q�; 1� P�Bj � q��

� 1� jP�Ai � q� � P�Bj � q�j; (14)

for any q 2 f0; . . . ; d� 1g. Using this expression in the
above inequality for IN and defining N arbitrary different
values qj, we get
 

IN 

XN
j�1

�jP�Aj � qj� � P�Bj � qj�j � jP�Aj�1 � qj�

� P�Bj � qj�j�



XN
j�1

jP�Aj � qj� � P�Aj�1 � qj�j; (15)

where the second inequality follows from the triangle
inequality. The hypothesis P�Ak � a�> 1=d� d=4I�N im-
plies that

 jP�Ak � a0� � P�Ak � a0 � 1�j> I�N (16)

for some a0 [19]. If we define the values qj used in (15) by
q1 � . . . � qk�1 � a0 and qk � . . . � qN � a0 � 1 (mod-
ulo d), we obtain the inequality
 

IN 
 jP�A1 � a0� � P�Ak � a0� � P�Ak � a0 � 1�

� P�AN�1 � a0 � 1�j

� jP�Ak � a0� � P�Ak � a0 � 1�j> I�N; (17)

since AN�1 � A1 � 1 (modulo d), by definition. �
Classical simulation of the correlations.—Finally, we

note that the bound (10) can be interpreted, in the spirit of
Ref. [20], as a bound on the average communication nec-
essary to simulate classically the nonlocal correlations of a
single copy of a quantum state. In fact, using inequalities
similar to (5), one can show that at least log2d bits are
necessary. This bound is not optimal asymptotically, since
for large d a bound of O�d� bits is known [21]. It may,
however, be useful for small d. In particular, for d � 2, it
implies that the protocol of Ref. [22] is optimal.

Summary and conclusions.—The quantum correlations
introduced imply that maximally entangled quantum states
in arbitrary dimensions have zero local component. They
motivate experiments that could bound the weight of the
local component as close to zero as possible. In a non-
signaling context, the correlations are also provably mo-
nogamous, which gives them an immediate application in
key distribution. It would be interesting to characterize the
sets of quantum correlations that are monogamous in this
sense; in particular, it would be interesting to know if there
are monogamous quantum correlations that can be ob-
tained in an experiment with only a finite number of

measurement settings at each site, rather than in the limit
in which the number of settings tends to infinity.
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