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We introduce a simple local atomic structure optimization algorithm which is significantly faster than
standard implementations of the conjugate gradient method and often competitive with more sophisticated
quasi-Newton schemes typically used in ab initio calculations. It is based on conventional molecular
dynamics with additional velocity modifications and adaptive time steps. The surprising efficiency and
especially the robustness and versatility of the method is illustrated using a variety of test cases from
nanoscience, solid state physics, materials research, and biochemistry.
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Finding mechanically stable equilibrium configurations
of atomistic systems is one of the most common tasks in
computational materials science, solid state physics, chem-
istry, and biology. This corresponds to finding the (nearest)
atomic structures with minimum potential energy, starting
from a given initial configuration. To solve this task a
variety of well-established optimization methods, like
steepest descent, conjugate gradient (CG), Newton-
Raphson, quasi-Newton or truncated-Newton methods
are available [1–4]. The current state-of-the-art methods
are mostly based on some approximate representation for
the Hessian matrix to determine line search directions.
Also variants of molecular dynamics (MD) methods which
systematically remove kinetic energy from the system are
commonly applied for minimization purposes [5–7]. Such
local ‘‘quenching’’ is important also in many global mini-
mization algorithms [8,9]. Interestingly, relaxation meth-
ods based on MD has been thought to be good for practical
realization, but not very competitive with the aforemen-
tioned sophisticated algorithms, and for this reason they
have often been introduced as by-products of secondary
importance in regular articles [5–7], not receiving the
attention they deserve.

Here we introduce a simple, yet powerful MD scheme
for structural relaxation. Consider a blind skier searching
for the fastest way to the bottom of a valley in an unknown
mountain range described by the potential energy land-
scape E�x� with x � �x1; x2�. Assuming that the skier is
able to retard and steer we would recommend him to use
the following equation of motion:

 

_v�t� � F�t�=m� ��t�jv�t�j�v̂�t� � F̂�t��; (1)

with the mass m, the velocity v � _x, the force F �
�rE�x�, and hat denoting a unit vector. We recommend
the strategy that the skier introduces acceleration in a
direction that is ‘‘steeper’’ than the current direction of
motion via the function ��t� if the power P�t� � F�t� � v�t�

is positive, and in order to avoid uphill motion he simply
stops as soon as the power becomes negative. On the other
hand, ��t� should not be too large, because the current
velocities carry information about the reasonable ‘‘aver-
age’’ descent direction and energy scale.

We show in this Letter that Eq. (1) brings the skier
surprisingly fast to the desired destination. A discretized
version of Eq. (1) in combination with an adaptive time
step results in a minimization scheme for multidimensional
functions E�x1; . . . xM� which is competitive in speed with
the above mentioned sophisticated optimizers, but has also
other important features as we shall demonstrate. Contrary
to the conventional schemes, the new algorithm relies on
inertia and, consequently, this novel method was dubbed
FIRE for fast inertial relaxation engine. Figure 1 shows
that FIRE easily keeps up with powerful standard schemes

FIG. 1 (color). Optimization of a spiral-shaped potential en-
ergy function (see left inset, X is the starting point). Shown is the
evolution of the azimuthal angle � versus the number of function
calls of FIRE, CG, and L-BFGS. FIRE is slower at the begin-
ning, but catches up quickly with L-BFGS as the curvature
increases, with CG not converging within 500 function calls
due to inefficient line searches as displayed in the right inset
showing a part of the trajectory of FIRE (red) and CG (blue).
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like CG and the limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) scheme [10] in a two-
dimensional spiral potential. In calculations on a broad
range of realistic test systems the new algorithm was
surprisingly fast and could be used with great ease for
systems with millions of degrees of freedom.

The numerical treatment of the algorithm is simple. Any
common MD integrator can be used as the basis for the
propagation due to the conservative forces. The MD tra-
jectory is continuously readjusted by two kinds of velocity
modifications: (a) the above-mentioned immediate stop
upon uphill motion and (b) a simple mixing of the global
(3Natoms dimensional) velocity and force vectors v! �1�
��v� �F̂jvj, resulting from an Euler-discretization of the
last term in Eq. (1) with time step �t and � � ��t. Both
�t and � are treated as dynamically adaptive quantities.

Explicitly, the FIRE algorithm uses the following propa-
gation rules (given initial values for �t, � � �start and for
the global vectors x and v � 0):
MD: calculate x, F � �rE�x�, and v using any common
MD integrator; check for convergence.
F1: calculate P � F � v.
F2: set v! �1� ��v� �F̂jvj.
F3: if P> 0 and the number of steps since P was negative
is larger than Nmin, increase the time step �t!
min��tfinc;�tmax� and decrease �! �f�.
F4: if P 	 0, decrease time step �t! �tfdec, freeze the
system v! 0 and set � back to �start.
F5: return to MD.

In relaxation an accurate calculation of the atomic tra-
jectories is not necessary, and the adaptive time step allows
FIRE to increase �t until either the largest stable time step
�tmax is reached, or an energy minimum along the current
direction of motion (P< 0) is encountered. In the latter
case the system is instantly frozen (v! 0) and the time
step is substantially reduced in order to have a smooth
restart. A short ‘‘latency’’ time of Nmin MD steps before
accelerating the dynamics is important for the stability of
the algorithm.

Most of the parameters introduced above are not sensi-
tive to different systems. For all systems under study, the
following parameters yielded a fast and robust behavior:
Nmin � 5, finc � 1:1, fdec � 0:5, �start � 0:1, and f� �
0:99 [11]. Thus the only adjustable parameter of the
method is the maximum time step �tmax. From a typical
MD simulation time step �tMD one can obtain an initial
rough estimate of �tmax 
 10�tMD.

Special attention needs to be paid to the global nature of
the algorithm, which assumes that all degrees of freedom
are comparable. All the velocities should be on the same
scale, which for heteronuclear systems can be roughly
achieved by setting all the atom masses equal.

To demonstrate the performance of FIRE, we compare it
to two relaxation methods: the Polak-Ribière version of
CG with the popular numerical recipes implementation

[2], and the limited memory version of BFGS (L-BFGS)
[1,10]. These are widely used methods in large systems
where storage and arithmetic costs are an issue [12].
Although there are more specialized implementations
available for these methods [4,13], the popularity and
good documentations make these algorithms ideal refer-
ence methods [14]. In the comparisons the root-mean-
square (rms) of the global force Frms � jFj=�3N�1=2 (force
norm) is taken as a representative measure for the degree of
relaxation in most cases. The number of ‘‘function calls’’ is
a generic notation for the number of separate points x
where either energy, force, or both are evaluated.

As a first demonstration, Fig. 1 shows FIRE, CG, and
L-BFGS optimizations of a function E�x1; x2� � sin��r�
�=2� � r2=10, modeling a curved relaxation pathway. In
atomic systems, curved relaxation paths are the result of
the usually highly corrugated, intricate potential energy
surfaces. In this model, FIRE (masses � 1 and �tmax �
0:3) with its smooth downhill trajectory reaches the mini-
mum (E<�0:99) first, followed soon by L-BFGS.
However, according to a wall clock, FIRE is almost 3 times
faster than L-BFGS due to small computational overhead.
CG is slow for the curved, nonharmonic function due to
inefficient line searches as shown in Fig. 1.

The first real test system is the biomolecule fenretinide,
which is used as a cancer drug [see upper inset in Fig. 2(a)].
The atomic interaction was modeled using the density-
functional based tight-binding (DFTB) method (see
Ref. [15] and references therein). The starting configura-
tion was created by twisting the carbon chain along the
chain axis. This is a challenging setup since the unwinding
is done by the torsional force of single carbon-carbon
bonds. In FIRE, all the masses were set to 1 u and �tmax �
1 fs.

Figure 2(a) shows that in terms of Frms FIRE is always
ahead of L-BFGS even though the energies go nearly
parallel. CG is much slower and shows almost no decrease
either in Frms or energy beyond a certain point. Analysis of
the relaxation trajectory shows that especially for CG the
straightening process is crowded with inefficient line
search directions, indicating the high curvature of the
minimization pathway. It is especially interesting to note
that FIRE becomes overall faster relative to both CG and
L-BFGS when the initial twist angle is increased, resulting
in a larger distance from the minimum and larger anhar-
monicity of the energy landscape.

The above relaxation was repeated using SCC-DFTB
[15], which requires self-consistent charge distribution and
often pertains intrinsic (random) errors in the potential
energy due to imperfect convergence of the electronic
degrees of freedom. Both CG and L-BFGS optimizations
did not converge due to their sensitivity to errors in energy.
Even though forces are also erroneous, FIRE was able to
optimize the structure because the inertia manages to
smoothen out the errors. This is an important feature, since
this situation is frequent in ab initio calculations.
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DFTB was also applied for quenching of a metallic Na�71

nanocluster, where the initial structure was a sphere cut
from a perfect lattice. Figure 2(b) shows that FIRE first
relaxes the symmetric structure but is then able to break the
symmetry of the cluster and finally finds a new low-energy
structure. L-BFGS and CG relax the symmetric structure
but are not able to break the symmetry of the cluster, which
requires going through a shallow valley with very small
forces which an energy-based optimization method does
not achieve.

One larger test system is shown in Fig. 2(c), which is an
approximant to a decagonal AlNiCo quasicrystal [16,17]
with 3360 atoms in periodic boundary conditions (PBC)
and a fixed box size. The atomic interaction was modeled
with the embedded atom method potential [17,18].

Although this is a seemingly ideal problem for the classical
algorithms since no large conformation changes occur,
FIRE is surprisingly competitive to L-BFGS and roughly
3 times faster than CG.

Further performance tests were conducted on a broad
range of different systems such as the relaxation of a crack
and a vacancy, and the quenching of a hot copper film. The
crack system is setup according to the anisotropic linear
elastic solution for a sharp crack at the Griffith load in Ni
(for details see [19]). It requires the relaxation of large
strains at the crack tip and their interaction with the long
range strain field of the crack. Similarly, the vacancy
system requires the relaxation of very large forces around
the vacancy and the adjustment of the long range stress
field. Finally, the quenching of a freestanding thin copper
film from 1000 K temperature combines the relaxation of
the long range thermal expansion with the relaxation of
local displacements. The results for these systems are
compiled in Table I. In performance FIRE is in all cases
between CG and L-BFGS, being faster than CG by a factor
of 3–6 and becoming more efficient especially for small
convergence criteria.

The determination of saddle points, transition states or
critical points constitutes another class of typical relaxa-
tion problems. As a well documented example [20], we
have chosen the determination of the Peierls stress �P of an
edge dislocation in Al (2:0 MPa< �P < 2:2 MPa). Details
of the setup and the boundary conditions are given in [21].
Starting from a fully relaxed stable structure at � �
1:8 Mpa the systems were loaded to � � 2:0 MPa and
2:2 MPa. FIRE performed as expected. Relaxation at
2:0 MPa led to a stable configuration at the initial position.
At 2:2 MPa, the dislocation started to move in the pseu-
dodynamics of FIRE. In contrast, L-BFGS provided no
indication for instability. The dislocation moved for a
significant distance (
10 �A) at both stresses until the opti-
mization stopped since no further minimization was pos-
sible. The direct applicability of FIRE to such critical point
analysis, which apparently is not possible with L-BFGS
and other energy minimizing algorithms is due to its strict
adherence to minimizing forces. This has to be regarded as

TABLE I. Number of function calls required by FIRE, CG,
and L-BFGS to reach convergence for the relaxation of different
test systems. The used criteria were Frms 	 10�3 eV= �A
(10�6 eV= �A) [for vacancy also the maximum force component
was used: fi 	 10�3 eV= �A (10�5 eV= �A)].

System Natoms FIRE CG L-BFGS

AlNiCo 3360 136 (639) 661 (2131) 98 (350)
Crack in Ni 4815 61 (207) 174 (764) 20 (118)
Hot Cu plate 16 200 299 (585) 545 (1767) 61 (217)
Vacancy in Cu 107 998 43 (132) 58 (329) 9 (55)
Vacancy in Cu 1 492 991 43 (118) 59 (358) 11 (-)

FIG. 2 (color). (a) Relaxation of fenretinide (Lewis structure
shown in the upper inset) modeled with density-functional based
tight-binding. The force norm as a function of the number of
function evaluations is shown for FIRE, CG, and L-BFGS (The
color coding is shown in c). The lower inset shows the evolution
of the total energy E above the equilibrium value E0. (b) Relaxa-
tion of metallic Na�71 nanocluster. CG and L-BFGS remain in the
symmetric structure (upper inset), while FIRE finds a lower
energy symmetry-broken structure (lower inset). (c) Relaxation
of the AlNiCo quasicrystal.
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a big advantage of the algorithm and indication of its wide
applicability.

Apart from the performance, FIRE thus incorporates
features making it a very versatile optimizer. As already
mentioned, the method is stable with respect to random
errors in the potential energy, it is well suited for problems
near critical points and it can be used with very small
convergence criteria with the force scale decreasing nearly
exponentially. In addition to that, compared to other re-
laxation algorithms, FIRE is extremely simple with around
10 additional lines of code to any MD implementation.
Moreover, it has nearly no computational overhead, has
very low memory requirements and scales well with the
system size; calculations with up to 38� 106 atoms have
been performed without problems. FIRE is also well suited
for other optimization tasks, such as constrained minimi-
zation (using the existing standard constrained MD meth-
ods, e.g., by setting � � 0), parallel computing, and
transition state calculations such as the nudged elastic
band method, where MD-type methods are often used
[22]. Since the initial guess for the maximum time step
�tmax is easy to make, and usually one makes several
optimizations for similar systems, the parametrization
does not require more attention than in other methods.

Finally, since FIRE requires only the first derivatives of
the target function, it can easily be adapted to various other
minimization problems. By now, FIRE has been applied
successfully also to a handful of other general multidimen-
sional minimization problems, where preliminary results
show it to be often more efficient than previously used
common algorithms [23].

In conclusion we have presented an extremely simple,
universally applicable robust new algorithm for the relaxa-
tion of atomic structures. Tests on different systems show
that for large scale simulations the method is significantly
faster than commonly used CG and competes even with
L-BFGS. FIRE can be generally recommended as a versa-
tile alternative to noninertial atomistic relaxation methods.
It is also ideally suited for the study of the mechanical
stability of systems for the determination of transition
states, where competing methods often fail.
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