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Phase Diagram of Patchy Colloids: Towards Empty Liquids
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We report theoretical and numerical evaluations of the phase diagram for patchy colloidal particles of
new generation. We show that the reduction of the number of bonded nearest neighbors offers the
possibility of generating liquid states (i.e., states with temperature 7 lower than the liquid-gas critical
temperature) with a vanishing occupied packing fraction (¢), a case which can not be realized with
spherically interacting particles. Theoretical results suggest that such reduction is accompanied by an
increase of the region of stability of the liquid phase in the (7-¢) plane, possibly favoring the establish-
ment of homogeneous disordered materials at small ¢, i.e., stable equilibrium gels.
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The physico-chemical manipulation of colloidal par-
ticles is growing at an incredible pace. The large freedom
in the control of the interparticle potential has made it
possible to design colloidal particles which significantly
extend the possibilities offered by atomic systems [1]. An
impressive step further is offered by the newly developed
techniques to assemble (and produce with significant yield)
colloidal molecules, particles decorated on their surface by
a predefined number of attractive sticky spots, i.e., particles
with specifically designed shapes and interaction sites [2—
5]. These new particles, thanks to the specificity of the
built-in interactions, will be able not only to reproduce
molecular systems on the nano and micro scale, but will
also show novel collective behaviors. To guide future
applications of patchy colloids, to help in designing
bottom-up strategies in self-assembly [6—8], and to tackle
the issue of interplay between dynamic arrest and crystal-
lization—a hot-topic related, for example, to the possibil-
ity of nucleating a colloidal diamond crystal structure for
photonic applications [9]—it is crucial to be able to predict
the region in the (T-¢) plane in which clustering, phase
separation, or even gelation is expected.

While design and production of patchy colloids is
present-day research, unexpectedly theoretical studies of
the physical properties of these systems have a longer
history, starting in the eighties in the context of the physics
of associated liquids [10—15]. These studies, in the attempt
to pin down the essential features of association, modeled
molecules as hardcore particles with attractive spots on the
surface, a realistic description of the recently created
patchy colloidal particles. A thermodynamic perturbation
theory (TPT) appropriate for these models was introduced
by Wertheim [16] to describe association under the hy-
pothesis that a sticky site on a particle cannot bind simul-
taneously to two (or more) sites on another particle. Such a
condition can be naturally implemented in colloids, due to
the relative size of the particle as compared to the range of
the sticky interaction. These old studies provide a very
valuable starting point for addressing the issue of the phase
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diagram of this new class of colloids, and, in particular, of
the role of the patches number.

In this Letter, we study a system of hard-sphere particles
with a small number M of identical short-ranged, square-
well attraction sites per particle (sticky spots), distributed
on the surface with the same geometry as the recently
produced patchy colloidal particles [4]. We identify the
number of possible bonds per particle as the key parameter
controlling the location of the critical point, as opposed to
the fraction of surface covered by attractive patches. We
present results of extensive numerical simulations of this
model in the grand-canonical ensemble [17] to evaluate the
location of the critical point of the system in the (7T-¢)
plane as a function of M. We complement the simulation
results with the evaluation of the region of thermodynamic
instability according to the Wertheim theory [16,18,19].
Both theory and simulation confirm that, on decreasing the
number of sticky sites, the critical point moves toward
smaller ¢ and T values. We note that while adding to
hard spheres a spherically symmetric attraction creates a
liquid-gas critical point which shifts toward larger ¢ on
decreasing the range of interaction, the opposite trend is
presented here when the number of interacting sites is
decreased. Simulation and theory also provide evidence
that for binary mixtures of particles with two and three
sticky spots (where (M), the average M per particle can be
varied continuously down to two by changing the relative
concentration of the two species) the critical point shifts
continuously toward vanishing ¢. This makes it possible to
realize equilibrium liquid states with arbitrary small ¢
(empty liquids), a case which can not be realized via
spherical potentials.

We focus on a system of hard-sphere particles (of di-
ameter o, the unit of length) whose surface is decorated by
M sites (see Fig. 1), which we collectively label I". The
interaction V(1, 2) between particles 1 and 2 is

V(1,2) = Vis(ryp) + > Vi (rap) (1)
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FIG. 1 (color online). Schematic representation of the location
of the square-well interaction sites (centers of the small spheres)
on the surface of the hardcore particle. Sticks between different
interaction sites are drawn only to help visualize the geometry.

where the individual sites are denoted by capital letters,
Vs is the hard-sphere potential, V{35 (x) is a well interac-
tion (of depth —u, for x = &, 0 otherwise), and rj, and rp
are, respectively, the vectors joining the particle-particle
and the site-site centers [20]. Geometric considerations for
a three touching spheres configuration show that the choice

8 = 0.5(v/5 — 2+/3 — 1) = 0.119 guarantees that each site
is engaged at most in one bond. With this choice of J, M is
also the maximum number of bonds per particle.
Temperature is measured in units of u, (i.e., Boltzmann
constant kg = 1).

To locate the critical point, we perform grand-canonical
Monte Carlo (GCMC) simulations and histogram re-
weighting [21] for M = 5, 4 and 3 and for binary mixtures
of particles with M = 3 (fraction &) and M = 2 (fraction
1 — a) at five different compositions, down to (M) =
3a +2(1 — @) = 2.43. We implement MC steps com-
posed each by 500 random attempts to rotate and translate
a random particle and one attempt to insert or delete a
particle. On decreasing (M), numerical simulations be-
come particularly time consuming, since the probability
of breaking a bond ~¢!/” becomes progressively small. To
improve statistics, we average over 15-20 independent
MC realizations. Each of the simulations lasts more than
10° MC steps. After choosing the box size, the T and the
chemical potential u of the particle(s), the GCMC simu-
lation evolves the system toward the corresponding equi-
librium density. If 7 and w correspond to the critical point
values, the number of particles N and the potential energy
E of the simulated system show ample fluctuations. The
linear combination x ~ N + sE (where s is named field
mixing parameter) plays the role of order parameter of the
transition. At the critical point, its fluctuations are found to
follow a known universal distribution, i.e. (apart from a
scaling factor), the same that characterizes the fluctuation
of the magnetization in the Ising model [21]. Recent ap-
plications of this method to soft matter can be found in
Ref. [22-24].

Figure 2 shows the resulting density fluctuations distri-
bution P(¢) at the estimated critical temperature T, and
critical chemical potential(s) w. for several M values[25].
The distributions, whose average is the critical packing
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FIG. 2 (color online). Density fluctuations distribution P(¢) in
the GCMC simulations at the critical point for four of the studied
M values. The inset shows P(x) for all studied cases, compared
with the expected distribution (full line) for a system at the
critical point of the Ising universality class [21].

fraction ¢, shift to the left on decreasing M and become
more and more asymmetric, signalling the progressive
increasing role of the mixing field. In the inset, the calcu-
lated fluctuations of x, P(x), are compared with the ex-
pected fluctuations for systems in the Ising universality
class [21] to provide evidence that (i) the critical point has
been properly located; (ii) the transition belongs to the
Ising universality class in all studied cases. The resulting
critical parameters are reported in Table I. Data show a
clear monotonic trend toward decreasing 7. and ¢, on
decreasing M.

Differently from the ¢ .-scale, which is essentially con-
trolled by M, T., depends on the attractive well width.
Experimentally, values of uq/kzT comparable to the ones
reported in Table I can be realized by modifying the
physical properties (size, polarizability, charge, hydropho-
bicity) of the patches [3—5] or by functionalizing the
surface of the particle with specific molecules [26,27].

One interesting observation steaming from these results
is that reduction of M makes it possible to shift ¢, to
values smaller than ¢ = 0.13, which is the lowest ¢,

TABLE I. Values of the relevant parameters at the critical
point. In the one-component case (M = 3,4, 5), w! is the critical
chemical potential (in units of u). In the case of the mixture, u}
(u?2) is the critical chemical potential of M = 3 (M = 2) parti-
cles. L indicates the largest box size studied.

(M) T, b e we s L
243 0076 0036  —0.682 —0492 070 9
249 0079 0045 —0.646 —0483 064 9
256 0082 0052 —0611 —0478 057 9
264 0084 0055 —0583 —0482 057 9
272 0087 0059  —0552 0493 052 9
3 0094 0070  —0.471 e 046 9
4 0.118 0140  —0.418 oy 008 7
5 0132 0185  —0.410 e 0 7
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possible for attractive spherical potentials. Indeed, for
spherical square-well potentials 0.13 < ¢, < 0.27, the
two limits being provided by the van der Waals model
(in which repulsion is modeled by the Carnahan-Starling
expression) and by recent numerical analysis of the Baxter
model[22], respectively, with infinite and infinitesimal in-
teraction range. We also note that results are consistent
with those based on a toy model where an ad hoc constraint
was added to limit valency [28] and also with previous
studies of particles interacting with nonspherical potentials
[29,30].

Visual inspection of the configurations for small (M)
shows that the system is composed by chains of two-
coordinated particles providing a link between the three-
coordinated particles, effectively renormalizing the bond-
ing distance between the M = 3 particles. On adding more
M = 2 particles, the bonding distance between M = 3
particles increases, generating smaller and smaller ¢..

To extend the numerical results beyond the point where
it is currently possible to properly perform GCMC simu-
lations (at the lowest (M), each calculation of the 20
studied samples requires about 1 month of CPU time on
a 3.1 GHz processor) and to complement the numerical
results, we solve the first-order Wertheim TPT [16,18,19]
for the same model (Eq. (1)). The theory can be applied
both to one-component systems (M =3, 4, 5) and to
binary mixtures ( (M) spans continuously the region from
M = 2—where no critical point is present—to M = 3)
[31].

In TPT, the free energy of the system is written as the
Helmholtz HS reference free energy Ayg plus a bond
contribution Ay,,4, Which derives by a summation over
certain classes of relevant graphs in the Mayer expansion
[19]. The fundamental assumption is that the conditions of
steric incompatibilities are satisfied: (i) no sites can be
engaged in more than one bond; (i) no pair of molecules
can be double bonded. The chosen & guarantees that the
steric incompatibilities are satisfied in the present model.
In the more transparent (but equivalent) formulation of
Ref. [32], Apong 1S Written as

X
BAbond — Z(lnXA _24A

N Ael’ 2

1
> + 5 M. 2)

Here X, is the fraction of sites A that are not bonded. The
X s are obtained from the mass-action equation

1
1+ ZBEF pXpAap

where p = N/V is the total number density and A,z is
defined by

Xa

3)

Apg = 47TfgHs(rlz)(fAB(lz»wl,wzr%zd"n- 4

Here gps(12) is the reference HS fluid pair correla-
tion function, the Mayer f-function is f,5(12) =

exp(— VP (rap)/kpT) — 1, and (f45(r12))w, o, [33] repre-

sents an angular average over all orientations of molecules
1 and 2 at fixed relative distance r,.

The evaluation of A,y requires an expression for
gus(r12) in the range where bonding occurs. We have
used the linear approximation [12]

1-05¢ 9 ¢(1+4¢)
(1—-¢)y 20-¢)

which provides the correct Carnahan-Starling [34] value at
contact.

To locate the critical point, we calculate the equation of
state P(V,T) = —3(Aps + Apona)/ 0V and search for the
T and ¢ value at which both the first and the second
volume (V) derivative of the pressure (P) along isotherms
vanish. Figure 3 shows a quantitative comparison of the
numerical and theoretical estimates for the critical parame-
ters T, and ¢,.. Theory predicts quite accurately 7, but
slightly underestimates ¢,., nevertheless clearly confirms
the M dependence of the two quantities. The overall agree-
ment between Wertheim theory and simulations reinforces
our confidence in the theoretical predictions and supports
the possibility that on further decreasing (M), a critical
point at vanishing ¢ can be generated.

TPT allows us also to evaluate the locus of points where
dP/dVy = 0, which provide (at mean field level) the
spinodal locus. The predicted spinodal lines in the (7-¢)
plane for several M values are shown in Fig. 4. On decreas-
ing M also the liquid spinodal boundary moves to lower ¢
values, suggesting that the region of stability of the liquid
phase is progressively enhanced. It will be desirable to
investigate the structural and dynamical properties of
such empty liquids by experimental and numerical work
on patchy colloidal particles.

We note that our predictions are relevant to a larger class
of functionalized particles, when particle-particle interac-
tion is selective and limited in number. Very new materials

r=10D ®

gus(r) =

i < Simulations
‘ @1 r | | 1 [ | | (©) ]
0 0.1 0.2 02 3 4 5 72 3 4 5
9, M), M (M), M

FIG. 3 (color online). Comparison between theoretical and
numerical results for patchy particles with different number of
sticky spots. Panel (a) shows the location of the points in the
(T-¢) plane. Panels (b) and (c) compare, respectively, the M
dependence for T, and ¢..
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FIG. 4 (color online). Spinodal curves calculated according to
TPT for the studied patchy particles for several M and (M)
values.

belonging to this class are the recently synthesized DNA-
coated particles [26]. In this case, M can be varied by
controlling the number of strands and the attractive
strength can be reversibly tuned by varying the length of
the strands. Ratios of wuy/kgT comparable to the ones
discussed here can be realized. Again, the phase diagram
of these new materials has not been experimentally mea-
sured yet and we hope our work will provide a guideline.

For particles interacting with attractive spherical poten-
tials, phase separation always destabilizes the formation of
a homogeneous arrested system at low 7. Instead, it is
foreseeable that, with small (M) patchy particles, disor-
dered states in which particles are interconnected in a
persistent gel network can be reached at low 7" without
encountering phase separation. Indeed, at such low 7', the
bond-lifetime will become comparable to the experimental
observation time. Under these conditions, a dynamic arrest
phenomenon at small ¢ will take place. It will be thus
possible to approach dynamic arrest continuously from
equilibrium and to generate a state of matter as close as
possible to an ideal gel [35].

The study of the structural and dynamic properties of
these low (M) equilibrium systems will hopefully help in
developing a unified picture of other interesting network
formation phenomena taking place at low ¢ [36—40].
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