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We report on a model of a prestressed nonlinear semiflexible polymer chain that links thermally driven
dynamics to the creep behavior of living cells. Numerical simulations show that the chain’s creep follows
a power law with an exponent that decreases with increasing prestress. This is related to the propagation of
free energy through the chain in response to stretching, where the propagation speed is regulated by the
prestress via the chain’s nonlinear elasticity. These results indicate that the main aspects of cell rheology
are consistent with the dynamics of single polymer chains under tension.
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One of the outstanding problems of cellular mechanobi-
ology is to delineate the mechanisms responsible for the
rheological properties of the cytoskeleton (CSK) of adher-
ent cells. This is important since rheological properties are
fundamental for basic cellular functions (crawling, spread-
ing, division, invasion, mechanotransduction, intracellular
transport, etc.) that are essential for maintaining life.
Advances in this area have been made by studying rheol-
ogy of actin polymer gels [1–7], since actin is a major
force-bearing component of the CSK. It was found that the
rheology of actin networks is governed by the entropic
dynamics of their semiflexible polymer chains [1,3,5–7].
In living cells this behavior is observed only over short
time scales (<0:01 s) [8,9], whereas mechanical cellular
functions operate at much longer time scales. Over longer
time scales, rheological behaviors of cells scale with a
weak power law [8–12]. The dynamics of glass transition
has been proposed to account for these behaviors [8,10,12],
but the physical basis of this theory within living cells
remains unclear.

During recent years, microrheological measurements re-
vealed that the rheology of cells is influenced by the pre-
existing mechanical distending stress (or prestress) borne
by the CSK [8–16]. This is intriguing since it implies that
dynamic processes within the cell are governed by static
mechanical stress, an idea that has not been reconciled with
the current approaches used to model cell rheological be-
haviors. In particular, it was found that the power-law
exponent decreases with increasing prestress [15], regard-
less of cell type, rheological techniques used, and the
manner by which the prestress is modulated [8,10,12–
14,16].

In this study, we hypothesize that sustained mechanical
tension exerted on semiflexible polymer chains by the
cytoskeletal prestress alters their molecular dynamics and
thereby influences cell rheology. Using a statistical me-
chanical model, we show that a single semiflexible poly-
mer chain under tension exhibits properties that are similar
to a variety of behaviors observed in living cells, including

the power-law rheology and its dependence on the
prestress.

The relaxation of linear polymer chain models follows a
power law with a fixed exponent [2,5,17], unlike in living
cells [8–16] and cross-linked actin gels [4]. By introducing
nonlinearity in the elasticity of the polymer chain, we show
that the observed dependence of the power-law exponent
on the prestress can be reproduced.

We consider a chain comprised of N elastic bonds of
unstretched length b0 connected by flexible joints (‘‘mono-
mers’’) of undeformed bond angle �0. Similar models have
been previously used to describe elasticity of semiflexible
polymers, including actin [18,19]. For simplicity, we
model the chain as a two-dimensional system. Since the
movement of a single chain within a polymer network is
confined to a tubelike region bounded by its neighboring
chains [1,17], our chain model is built and is allowed to
move inside a long, straight, rigid tube of a constant
diameter (d). The elastic energy (U) stored in the chain
is given by
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whereK1 andK2 are the linear and nonlinear, ‘‘hard’’ bond
stiffnesses, respectively, K� is the angular joint stiffness,
�b is the change in bond length relative to b0, and �� is
the change in bond angle relative to �0. The dynamics of
the chain is driven by the motion of the joints as they
thermally seek an energetically favorable position in a
fixed neighborhood.

First, the chain is allowed to thermodynamically equili-
brate using a Monte Carlo energy minimization procedure
[20] as follows. A joint within the chain is selected and
moved to a random position within a given rectangular
region R. The change in energy (�U) of the chain with
respect to the original configuration is then calculated
according to Eq. (1). This procedure is then repeated M
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times, and the configuration with the lowest �U is selected
from these attempts. If �U corresponding to the selected
configuration is negative, it is accepted as the new configu-
ration. If �U is positive, the probability of accepting this
configuration is given by exp���U=kT�, where k is the
Boltzmann’s constant and T is absolute temperature. This
procedure is applied to each internal node of the chain in a
random order which defines one Monte Carlo time step
[20] that, in turn, represents a time unit in our model. In
order to simulate the creep response, the chain is stretched
along the tube’s axis by a pair of forces (F), acting at the
chain’s end points. To mimic the effect of prestress, we
increase F in successive steps (�F), and at each step we
define the prestressing force as F0 � F� �F. We avoid an
instantaneous equilibration of the chain’s end bonds in
response to �F by modeling the end bonds as identical
spring-dashpot-mass systems. Specifically, each end bond
consists of a lumped mass (m) in series with a spring and a
dashpot in parallel. The spring is a regular bond of the
chain characterized by K1 and K2, and the damping coef-
ficient of the dashpot is given by 2

����������
K1m
p

. We perform a
dynamic force balance in the direction of �F to determine
the positions of the chain’s ends, which is followed by a
single Monte Carlo step to obtain a new chain configura-
tion while the chain’s ends are held fixed. Next, the force
balance is recalculated to obtain the new end-to-end length
(L) of the chain. This entire procedure is iterated in order to
obtain the creep behavior by tracking the change in the
component of L parallel to F (referred to as �L) as a
function of time (t). Once �L reaches a steady state, the
force is incremented and the creep response is recalculated.

The final calculations are carried out at a constant T,
with the value of kT assumed to be unity, using the fol-
lowing nondimensional parameter values: b0 � 1, �0 �
3�=4, d � 1:25, K1 � 160, K2 � 512, K� � 1, and non-
dimensional �F � 20, F0 of 0, 20, 40, and 60, and N
ranging from 16 to 2048. Additionally, we use a value of
m � 10 000, M � 10, and R � 1:5b0 � 0:75b0. At each
force step, the creep is calculated long enough (�106

Monte Carlo steps) for the steady state of the chain to be
reached. To test that the results are independent of M and
R, we repeat the calculations by doubling or halving both
parameters. We find that the rate of creep of the chain is not
sensitive to the values of M and R.

The model produces creep curves that exhibit three
distinct behaviors at a given F0: an initial fast creep, a
slow intermediate creep, and a steady state (Fig. 1). The
intermediate creep conforms to a power law, t�. Next, we
use finite size scaling to calculate the creep response for
chains of increasing N spanning 3 orders of magnitude.
With increasing N, the initial creep and the power-law
exponent � remain unaffected, while the duration of the
power-law creep expands, delaying the onset of the steady
state. To quantify the relationship between N and the
duration of creep, we calculate the crossover times (tx)
between the power-law and the steady-state regimes by
fitting the following ramp function to the power law and

the steady-state portions of the creep curves in the log-log
domain (Fig. 1):

 log�L�t� �
�
A logt� B 8 0< t < tx;
C 8 t � tx:

(2)

The function is forced to pass through the value of �L
corresponding to t � 300, which indicates the end of the
initial creep response. We find that tx also increases with N
as a power law (Fig. 1, inset). These results indicate a
consistent power-law behavior of the chain, which is ubiq-
uitous in living cells [8–16,21].

The initial creep response of the chain is determined by
the properties of its end bonds. The power-law creep,
however, includes contributions from all bonds. The dis-
turbance caused by the applied force at the end bonds is not
felt instantaneously throughout the chain. To further inves-
tigate this, we calculate the creep response of internal chain
segments. We find that the onsets of creep are delayed
throughout the chain with segments closer to the center
having longer delays and faster creep than those at the ends
(Fig. 2). The cumulative effect of the delayed creep re-
sponses of the chain’s internal segments leads to the ob-
served power-law behavior. The global creep response
reaches the new steady state approximately when the cen-
tral segment responds to the force perturbation. In the new
steady state, the chain is characterized by lower entropy,
higher internal energy, and hence increased free energy,
compared to the previous steady state. Thus, the creep is
associated with the gradual propagation of a disturbance
carrying free energy from the end bonds toward the center
of the chain.

FIG. 1. Creep curves (�L vs t) of single chains of N � 2i

bonds (i � 4; 5; . . . ; 11) and F0 � 20. The creep is characterized
by an initial fast response, a power-law intermediate-time re-
sponse, and a steady state. The duration of the power-law regime
increases with increasing N, whereas the fast response is not
affected. Inset: The crossover time (tx) between the creep regime
and the steady state, calculated from Eq. (2), increases with N
according to a power law tx 	 N

1:49.
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Increasing F0 causes the steady-state levels of �L to
decrease, while tx remains unchanged [Fig. 3(a)].
Consequently, both the rate of the power-law creep
[Fig. 3(a), inset] and � [Fig. 3(b)] decrease with increasing
F0 similar to the behavior observed in living cells [15]. To
investigate how the chain’s interactions with the tube in-
fluences �, we obtain the creep of a chain outside the tube.
We find that the tube has only a minor influence on the ��
F0 relation [Fig. 3(b)]. Next, we study the effects of non-
linear bond elasticity on the creep response by comparing
the �� F0 relation to that corresponding to a linear chain
with K2 � 0. We find that � is nearly independent of F0 in
the linear case [Fig. 3(b)].

To understand why nonlinear bond elasticity is critical
for bringing forth the dependence of � on F0, we analyze
the internal segments’ delayed creep responses (Fig. 2).
Because of this nonlinearity, both the effective bond stiff-
ness and the global chain stiffness are higher at F0 � 20
than at F0 � 0. Since propagation speed scales with the
square root of stiffness, this should result in a faster spread
of the disturbance from the end bonds toward the center of
the chain. We quantify the creep of internal chain’s seg-
ments, by fitting the segmental creep curves by the follow-
ing function in the semilog domain:

 �L�t� �
h

1� ��=t�b
: (3)

Obtained values of the parameters h, b, and � are then used
to calculate the delayed onset of creep (td) defined as the

time required for a segment to creep 1% of its steady-state
value of �L. We find that td’s are larger for F0 � 0 than for
F0 � 20 (Fig. 2, inset). Thus, the leading edge of the
disturbance propagates faster at higher prestresses. The
increased effective chain stiffness also reduces the
steady-state value of �L; at F0 � 0, the steady state �L
is greater than at F0 � 20 (	3:5 vs 	1:6). Thus, an
internal segment starts creeping earlier and attains a lower
steady-state value of �L at F0 � 20 than at F0 � 0.
Consequently, since tx is not affected by F0, the rate of
creep of individual segments as well as of the whole chain
is necessarily slower at F0 � 20 than at F0 � 0. Adding
nonlinearity to the angular spring stiffness has the same
effect on the creep behavior as the bond nonlinearity (not
shown). In the chain with linearly elastic bonds, however,

FIG. 3. (a) The rate of the creep of a chain (N � 350) slows
down with increasing F0 such that the power-law portions of the
creep curves corresponding to different F0’s exhibit a splay with
increasing time t (inset); h�Li indicates the mean value calcu-
lated from 5 chains. (b) For chains with nonlinearly elastic
bonds, � decrease with increasing F0, regardless of whether
the chain is stretched inside (�) or outside (
) the tube. For the
chain with linearly elastic bonds, � is nearly independent of F0

(4). The values of � are obtained by fitting t� to the power-law
regime of the creep curves [black dashed lines shown in the inset
of panel (a)].

FIG. 2. Creep curves (h�Li vs t) of internal segments of a
chain (N � 256), starting from the end bonds towards the center
of the chain, for F0 � 0; h�Li indicates the average end-to-end
length change from over 200 simulations. Each segment contains
16 bonds; n denotes the range of bond numbers for a given
segment; n � 1 and 256 correspond to the two end bonds, while
n � 128 and 129 are the bonds in the center of the chain.
Because of symmetry, results are shown only for half of the
chain. The onset of creep is delayed in the segments closer to the
center of the chain. Inset: The delay times (td) as a function of n
for F0 � 0 and F0 � 20.
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the chain’s effective stiffness is virtually independent of
F0, and hence F0 has little effect on the propagation speed
and thereby on �. Taken together, these findings suggest
that nonlinear elasticity of single actin chains may play a
key role in determining how � depends on prestress in
living cells. Experiments on prestressed actin gels also
indicate that material nonlinearity is necessary to link the
power law to the prestress [3,4].

Our results show that the duration of the creep charac-
terized by tx depends on N according to a power law tx 	
Nz, with z � 1:49 (Fig. 1, inset). Since z < 2, the chain
dynamics is driven by faster than diffusive processes. This
is also consistent with experimental data from living cells,
suggesting that nanoscale dynamics of the CSK at long
times is superdiffusive [11,21].

Values of � (	0:58–0:69) of the chain [Fig. 3(b)] are
more than 2 times greater than the values reported for cells
[8–16]. This discrepancy may reflect the arbitrary choice
of model parameters. For example, reducing kT can bring
� into the range of experimentally observed values.

Our results are comparable to experimental creep data
for a single actin filament within actin gel [1]. The actin
filament also exhibits an initial fast creep (1 s), followed by
a slow creep. However, due to the short duration of the
experiments (<3 s), a power-low regime could not be
observed [1]. By comparing durations of the initial creep
observed experimentally (1 s) with that of the model
(	300 Monte Carlo units), we obtain a scaling factor that
we use to estimate the duration of the power-law creep of
the model. For a chain withN � 32 (Fig. 1), the power-law
creep lasts 	10 s, which is consistent with the power-law
time scale observed in living cells [7–13]. Since the bond
length of actin polymers is 5–10 nm [18,19], it follows that
a chain of 35 bonds is 160–320-nm long, which is ap-
proximately the pore size of the actin cytoskeleton.

Our model links two fundamental features of cellular
mechanics: prestress and power-law rheology. The results
reveal that intrinsic nonlinear elasticity of the chain is
essential for establishing this link. This suggests that the
entropic dynamics of the chain alone cannot account for
the influence of the prestress on cell rheology, and that the
internal energy contributions, which result from the non-
linear elasticity, are essential. Our findings imply that the
observed complexities of cell rheology already exist at the
level of single prestressed polymer chains. Thus, our ap-
proach constitutes a new framework for understanding how
the prestress modulates cell behavior, and represents a de-
parture from the general thought that the cytoskeletal net-

work properties play a primary role in determining cell rhe-
ology. Furthermore, the mechanism of the delayed propa-
gation of a disturbance through the chain may be used to
explain how mechanical signals are transmitted through
the CSK. Finally, the model may also serve as a basis for
describing rheology of other semiflexible biopolymers,
including collagen or DNA.
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