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We propose a many-particle-inspired theory for granular outflows from a hopper and for the escape dy-
namics through a bottleneck based on a continuity equation in polar coordinates. If the inflow is below the
maximum outflow, we find an asymptotic stationary solution. If the inflow is above this value, we observe
queue formation, which can be described by a shock wave equation. We also address the experimental ob-
servation of intermittent outflows, taking into account the lack of space in the merging zone by a minimum
function and coordination problems by a stochastic variable. This results in avalanches of different sizes
even if friction, force networks, inelastic collapse, or delay-induced stop-and-go waves are not assumed.
Our intermittent flows result from a random alternation between particle propagation and gap propagation.
Erratic flows in congested merging zones of vehicle traffic may be explained in a similar way.
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Driven granular media display a rich spectrum of pattern
formation phenomena. This includes collective oscillating
states, convection patterns, the spontaneous segregation of
different granular materials, and the formation of ava-
lanches due to self-organized criticality [1]. Here, we
will focus on jamming and clogging phenomena [2] related
to arching [3] and on intermittent outflows through hoppers
[4,5]. Similar phenomena are known from dense pedestrian
crowds [6]. The escape dynamics of individuals from a
room has been intensively studied, showing that in crowd
stampedes, rooms are emptied in an irregular, strongly
intermittent fashion [7]. This effect has been discovered
in simulations performed with the social and the centrifu-
gal force model [7,8], with cellular automata and lattice
gas automata [9], and in a mean-field model [10]. It has
also been experimentally confirmed [6,11]. However, ana-
lytical models of escape dynamics and granular bottleneck
flows are lacking.

In this Letter we will formulate such a model. Our goal is
to gain a better understanding of (i) the resulting density
profiles and (ii) the irregular outflows at bottlenecks. The
model not only addresses the distribution of the avalanche
sizes in the outflow from a bottleneck, but it also offers a
possible explanation of the long-standing problem of per-
turbations forming in merging zones of freeway traffic
flows [12,13], which are characterized by erratic, forward
or backward moving shock waves [12]. It is believed that
these can trigger stop-and-go waves in traffic flows [12,14].
Similar findings have been made in overcrowded pedes-
trian flows [11] and expected for merging flows in urban
traffic and production networks.

In all these cases, the competition of too many entities
for little space leads to coordination problems. We are
therefore looking for a minimal, common model capturing
this feature. Hence, we will first abstract from specific

system features such as the non-Newtonian character of
real granular flows, nonslip boundary conditions, dissipa-
tive interactions, or force networks in quasistatic granular
flows [15,16], and discuss extensions later. This will allow
us to show that intermittent flows are caused even without
mechanisms like dissipative collapse [15], large spatiotem-
poral fluctuations due to force networks [16], or delay-
induced instabilities (as in traffic flows). These may mag-
nify the effect [17].

As pedestrian evacuation has been successfully de-
scribed by driven granular particle models, where a single
particle represents an individual pedestrian, we will for-
mulate a common model for escaping pedestrians and
gravity-driven outflows from vertical, two-dimensional
hoppers. Because of the conservation of the particle num-
ber, we will describe the aggregate, two-dimensional par-
ticle flow by the continuity equation for the particle density
� as a function of space and time. Both the shape of a fun-
nel and the semicircular shape of a waiting crowd suggest
to write this equation in polar coordinates. Assuming no
significant dependence on the polar angles � and ’ for the
moment, we obtain @�=@t� �1=r�@�r�v�=@r � 0 (gener-
alizing this to a 2d treatment later). Here, t denotes the
time, r � 0 the distance from the bottleneck (exit), and
v � 0 the velocity component in radial direction. The
above continuity equation can be rewritten as

 

@�
@t
�
@��v�
@r

� �
�v
r
; (1)

where the term on the right-hand side reflects a merging
effect similar to an on-ramp or lane closure term in a model
of freeway traffic. By use of logarithmic derivatives, the
above equation can be rewritten as @ ln��r; t�=@t �
�v�r; t�@ ln�r��r; t�v�r; t�	=@r. For the stationary case
with @ ln�=@t � 0 it follows from @ ln�r�v�=@r � 0 that
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the overall flow f�r��r�v�r� through any cross section at
distance r is constant:

 f�r��r�v�r� � f�rq�r� �: �Q0 � const: (2)

q�r� � ��r�v�r� is the particle flow through a cross section
of unit length. f � 1 corresponds to the half circumference
�r of a circle of radius r, while f < 1 allows one to treat
hoppers with an opening angle smaller than 180
. (The
walls should be steeper than the angle of repose.)Q0 � 0 is
the stationary overall particle flow.

To facilitate the derivation of analytical results, we will
assume the linear velocity-density relationship

 v�r� � V���r�� � �v0�1� �=�max� � 0: (3)

v0 means the maximum (‘‘free’’) particle speed and �max

the maximum particle density. Equations (2) and (3) give
the quadratic equation ��r�v0�1� ��r�=�max	 �
Q0=�f�r� in �. With rcrit�Q0� :� Q0=�f�qmax� it implies

 ���r;Q0� �
�max

2

�
1�

��������������������������
1�

rcrit�Q0�

r

s �
; (4)

where qmax � v0�max=4 is the maximum flow. In free flow
with dj�V���j=d� � 0, the density profile is deter-
mined by the upstream boundary condition, i.e., Q0 is
given by the overall inflow Qin. Under congested condi-
tions [dj�V���j=d� < 0], Q0 is given by the overall out-
flow Qout � min�Qin; 2r0qmax; f�r0qmax�, i.e., the
minimum of the overall inflow Qin and the maximum
possible overall outflow. The stationary case requires
Qin � Qout and a non-negative discriminant in Eq. (4).
This calls for r0 � rcrit�Qin�, i.e., large outlets [see
Fig. 1(a)]. Then, ��r; t� converges to a stationary free
flow with the density profile ���r;Qin� � �max=2. The
density profile for other velocity-density relationships
than (3) can be obtained numerically. Smooth perturba-
tions like the humps in Fig. 1(a) propagate forward at the
speed V��� � �dV���=d� � �v0�1� 2�=�max� [18],
compactify close to the outlet, and leave the system.

If the overall inflow exceeds the overall outflow (Qin >
Qout), particles are jammed behind the outlet [Fig. 1(b)].
The initial density profile ��r; 0� again approaches
���r;Qin�< �max=2 in the free-flow regime at large dis-
tances r, but converges to ���r;Qout�>�max=2 in the con-
gested regime upstream of the outlet. The congestion front
moves forward until the jam density ���r;Qout� is reached.
Then, the particles queue up and the shock front at location
R�t� moves backward at the speed

 

dR
dt
� �

Qin �Qout

f�R�t�����R;Qin� � ���R;Qout�	
(5)

according to the shock wave equation [18] [see Fig. 1(b)].
Hence, we find the free-flow density profile ��r; t� �
���r;Qin� for r > R�t�, while for r < R�t� we have the
congested density profile ��r; t� � ���r;Qout�.

This applies to cases of continuous outflows, which are
observed for large enough openings [2,8] or small enough

pedestrian velocities v0 [7]. However, if the desired veloc-
ity v0 of pedestrians is high, their maximum density �max

goes up and intermittent outflows are observed [7,11]. This
intermittent behavior (see Fig. 2) reminds one of driven
granular media [4] and shall be modeled now. For this, let
us subdivide the particle bulk into shells of thickness �r
(for example, the particle diameter d or multiples of it).
Within each shell of area A�r� � f�r�r, we assume a
constant average density ��r; t� � N�r; t�=A�r�, where
N�r; t� denotes the number of particles in the shell of radius
r at time t. Furthermore, we assume that particles move
from one shell to the next with velocity v0, if they find a
suitable gap; otherwise, they will stay. The maximum
number of particles available to move into the shell of
radius r is ��r� �r; t�A�r��r�, while the maximum
number of available gaps in shell r is �maxA�r�
�1� ��r; t�=�max	, because �maxA�r� is the maximum
number of particles in the shell of radius r and q�r; t� �
1� ��r; t�=�max represents the fraction of free space.
Finally, we assume that ��r q�r; t� denotes the probability
to find a suitable gap in front of a particle allowing it to
move, where ��r are random numbers specified in each
time step with 0 � ��r � 1 and ��r��r � ��r (in order to
guarantee particle conservation). Then, the number of in-
flowing particles within the time interval �t � �r=v0 is
Nin�r; t� � �

�
r q�r; t�min�A�r��r���r��r; t�;A�r��max	,

while the number of outflowing particles is Nout�r; t� �
��r q�r� �r; t�min�A�r���r; t�; A�r��r��max	. From
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FIG. 1 (color online). Density profiles at different times:
(a) when the inflow is low and the initial density profile has a
hump, (b) the inflow exceeds the maximum outflow and the
initial density profile is a step function (shock wave). The
simulation results have been obtained by solving the continuity
equation with the Godunov scheme, assuming ��12rcrit; t� �
0:01 and floating boundary conditions at r � r0 � 2rcrit :�
2rcrit�Qin� in case (a), but ��2:8rcrit; t� � 0:1 and Qout �
2r0qmax (corresponding to the maximum outflow) with r0 �
0:5rcrit in case (b). Note that the asymptotic density profile is
���r;Qin� in free flow and ���r; Qout� in jammed flow.
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the balance equation N�r;t��t��N�r;t��Nin�r;t��
Nout�r;t� and ��r; t� � N�r; t�=A�r� we get
 

��r; t� �t� � ��r; t� � ��r

�
1�

��r; t�
�max

�

min
��

1�
�r
r

�
��r��r; t�; �max

�

� ��r

�
1�

��r��r; t�
�max

�

min
�
��r; t�;

�
1�

�r
r

�
�max

�
: (6)

Finally, note that the half circle of radius r0 around the exit
is treated analogously to the shells, but we have to replace
the area A�0� by A0 � �r2

0=2 and �Nout�0; t� by
�2r0�0�t�v0�t [i.e., the exit width 2r0 times the flow
q0�t� � �0�t�v0, if pedestrians can leave with maximum
velocity v0 into the uncongested space behind the exit].
The resulting equation for the density �0�t� in the last
(sub)area before passing the bottleneck is
 

�0�t��t���0�t���
�
0 �t�

�
1�

�0�t�
�max

�

min
�

2�r
r0

��r0;t�;�max

�
�

4�r
�r0

�0�t�: (7)

The minimum function in Eq. (6) delineates the merging-
related lack of space and outflow capacity. A similar

situation and minimum function occurs in merging flows
in urban street and production networks. With �r � v0�t,
� � ��r; t�, �r � ���r � ��r �=2, and �r � ���r � ��r ��1�
�=�max�=�t and for ��r; t� � �1��r=r��max, we find the
following equation in the limit �t;�r! 0:

 

@�
@t
�v0

�
��r �2�r

�
�max

�
@�
@r
�
�v0�

�
r

r

�
1�

�
�max

�
��r�:

(8)

With the linear velocity-density relation (3), this exactly
corresponds to the previous continuity Eq. (1), if ��r � 1,
as for small enough densities (see below). Fluctuations
��r < 1, however, allow one to describe a dynamics in
which less particles than possible are successful in finding
a gap in the next shell because of coordination problems.
The random variable ��r reflects that the microscopic
spatial configuration of the particles matters. When the
second terms in the minimum functions of Eq. (6) apply,
the dynamics is given by the equation

 

@�
@t
� v0�

�
r
@�
@r
�
v0��r
r
��max � ��r; t�	 � �r�max: (9)

After averaging over the noise terms ��r , representing the
average of ��r by ��, defining the gap density �̂�r; t� �
�max � ��r; t�, and introducing V̂ � v0

��, this turns into a
continuity equation for gap propagation:

 

@�̂
@t
�
@��̂ V̂�
@r

� �
�̂ V̂�t�
r

: (10)

Note that gaps propagate with velocity V̂ > 0, i.e., in
opposite direction to the particles.

We expect that a switching between gap propagation and
particle propagation by the minimum function can account
for the intermittent outflows of dense granular flows.
Triggered by the randomness of the variable ��r , the
switching mechanism can produce particle avalanches of
different sizes. The fluctuations ��r and their average value
�� can be adjusted to experimental or suitable microsimu-
lation results, e.g., to reflect the spatiotemporal fluctuations
due to granular force networks. Here, we have instead
simulated Eq. (6) with binomially distributed values of
��r , i.e. ��r � k=N with

 P�k� �
N
k

� �
pk�1� p�N�k:

P�k� is the probability that k 2 f0; 1; . . . ; Ng ofN � N�r; t�
particles successfully manage to move forward, where p �
�� is the probability of a particle not to be obstructed. We
have used the phenomenological specification

 p��; r� �
�
1�

�
r

�r

�
�max

�
� 1

�
�
� �

�
��

�r
r

��
�1
�
�1

(11)

if p > 0; otherwise, p :� 0. (�, �, and � are non-negative
fit parameters.) This ensures that p��; r� becomes 1 for
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FIG. 2 (color online). (a) In agreement with an experiment for
granular outflows from a two-dimensional hopper [5], our simu-
lation model generates exponentially distributed avalanche sizes
when frictionless particles with coordination problems are jam-
ming at a bottleneck (i.e., theory and experiment show a straight
line in a log-linear plot). (b) The standard deviation of the
outflow, divided by the average outflow shows 3 regimes: no
outflow for r0=�r < 1=� � 2:5, smooth outflows for large out-
lets, and intermittent flow in between. (c) The relative proportion
of time steps �t with a stopped outflow confirms this picture.
Our results are quite insensitive to the selected parameters. For
illustration, we chose � � 3, � � 2=5, � � 0:01, Qin � 4=�t,
v0 � �r=�t, �max � 1=��r�2, and, in (a), r0 � 5�r ( jammed
conditions).
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�! 0 or r! 1 and max�0; �����r=r�	 for �! �max.
That is, we have complete clogging, if r0=�r < 1=� �
5=2, which reflects arching if the outlet 2r0 is too small
(see Fig. 2). Otherwise, if the density is low or the bottle-
neck far away, we have p � 1 corresponding to particles
moving at the speed v � V���. In queued areas with � �
�max, gaps propagate upstream with velocity V̂ � v0����
�r=r�.

We have presented a shock wave approach to deter-
mine the spatiotemporal density profile in granular bottle-
neck flows and evacuation scenarios. Generalized to
two dimensions allowing one to consider boundary con-
ditions, friction, etc., there is a free-flow regime charac-
terized by forward motion according to @�=@t�
@��V�=@x����V=w�x�	dw�x�=dx, where �dw=dx�=w �
�@V?=@x?�=V replaces 1=r and describes the relative
change of locally available width w, i.e., the bottleneck
effect. x is the coordinate in flow direction and V > 0 the
corresponding speed, while ? represents the perpendicu-
lar direction. If w�x�� > �w�x� � �xdw=dx	�max, the
density after the next step of length �x (where �x is the
mean free path or a fit parameter) would exceed the maxi-
mum possible density �max. Therefore, if the ‘‘gap den-
sity’’ �̂�x; t� :� �max � ��x; t� falls below the value
��max�xdw=dx, we have instead the equation @�̂=@t�
@��̂ V̂�=@x � ���̂ V̂ =w�x�	dw�x�=dx for gap propagation,
where V̂ < 0 is the backward propagation speed. Hence, at
bottlenecks we have alternating phases of forward pedes-
trian motion with speed V and of upstream dissolving
pedestrian jams with average speed V̂, where V̂ and V
may fluctuate in space and time.

These formulas are useful for the appropriate dimen-
sioning of exits in order to avoid critical situations in
cases of emergency evacuation of people. If the bottleneck
is too small (and the desired speed v0 of pedestrians too
high), one may find intermittent flows close to and be-
hind the bottleneck [Figs. 2(b) and 2(c)]. These are due to
the fact that too many ‘‘particles’’ are competing for a
confined space. Obviously, not all particles can success-
fully progress when there are mutual obstructions. This
‘‘coordination problem’’ has been reflected by a fluctua-
tion factor ��r , the mean value p��;w=�dw=dx�� of
which drops significantly below 1 if ��r; t�=�max > 1�
�r�dw=dx�=w�x�, i.e., if not all particles fit into the re-
duced space when progressed by a distance �x.

The resulting dynamics is related to a stop-and-go phe-
nomenon: In the high-density jam, the velocity is zero, as
the particles cannot move. However, jam resolution at the
exit causes an upstream moving shock wave, in front of
which the density is low. Therefore, particles at the jam

front can leave the jam. In fact, if the density in front of the
jam is small enough, there is a forward motion of particles
filling the low-density area. Altogether, we will have alter-
nating phases of jam resolution and gap filling processes
close to the exit, which leads to alternating propagation
directions of the jam front. This may also explain the
observed alternation in the propagation direction of per-
turbations in freeway traffic flows [12].
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