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Using an atomic force microscope to nanopattern a substrate for liquid crystal alignment, a bend
distortion is imposed on a liquid crystal. In regions of large bend the smectic-A phase melts into the
nematic phase, and the width of the melted region is measured as a function of temperature. The results are
consistent with type-I superconducting (nematic–smectic-A) behavior, wherein a large magnetic field
(bend or twist distortion) induces an order to disorder transition. A model that accounts for non-mean-field
behavior is presented.

DOI: 10.1103/PhysRevLett.97.167802 PACS numbers: 61.30.�v, 64.70.Md, 74.25.�q

The similarity between the smectic-A (Sm-A) liquid
crystalline and the superconducting phases was first rec-
ognized by de Gennes [1]. As the superconductor free
energy is gauge invariant, the Sm-A free energy is invariant
under simultaneous rotation of the smectic layers and the
director n̂. Moreover, smectic fluctuations over a correlated
fluctuation volume �k�2

? in the higher temperature nematic
phase exclude bend and twist director distortions (which
involve r� n̂), which is analogous to fluctuation diamag-
netism in superconductors (which involves r� ~A). Here
�k and �? are the smectic correlation lengths parallel and
perpendicular to n̂, and ~A is the vector potential. One well-
known consequence of bend or twist expulsion in the
presence of smectic order—in this case smectic fluctua-
tions in the nematic phase—is the divergence of the elastic
constants K33 and K22 on approaching the bulk nematic–
Sm-A transition temperature TNA [2]. Another conse-
quence is the ‘‘twist grain boundary’’ phase [3,4], in which
a chiral Sm-A phase breaks into domains with a well-
defined rotation of the layer normal from one domain to
the next. Yet another consequence of bend or twist expul-
sion is the ‘‘melted grain boundary’’ phase for a bent Sm-A
liquid crystal [5]. For a region of Ginzburg parameter space
� � �=�k * 1=

���
2
p

, where � is the penetration length, the
melted grain boundary is characterized by a series of
quantized Sm-A domains. It can be stable over a wide
region of � space between the smectic analogs of type-I
and type-II superconductors.

Owing to the inability to control n̂ on sufficiently small
length scales, there have been few other experimental
reports involving bend deformations in the Sm-A phase.
But this situation has changed, as new nanomanipulation
methods have been developed for liquid crystals. In par-
ticular, the technique of scribing a polyimide-coated sub-
strate using the stylus of an atomic force microscope
(AFM) facilitates patterned ‘‘easy axes’’ for control of n̂
on nanoscopic length scales [6,7]. In this Letter we de-
scribe an experiment in which herringbone patterns are
scribed into a polyimide substrate, thereby enforcing a
bend-type distortion very close to the pixel interfaces. On

filling the cell with a type-I (� <�1=
���
2
p

) liquid crystal
[8], for T < TNA we find regions of temperature-dependent
width L�T� at the pixel interfaces that have melted into the
nematic phase. This bend-induced melting is equivalent to
the magnetic field induced superconducting to normal
transition. The behavior of L�T� provides strong evidence
that this system is type I, as predicted by the Landau-
Ginzburg-de Gennes free energy, in the temperature region
(close to TNA) for which smectic fluctuations are important.

The cell was composed of two microscope slides. One
slide was spin-coated with polyamic acid PI-2555
(Dupont) and baked at 275 �C for 120 min. This slide
then was rubbed using the stylus (Nanodevices Tap300)
of an Topometrix Explorer AFM with three herringbone
patterns, each 100� 100 �m in size, each occupying one
quadrant in the xy plane, with one corner of each located
near the origin. Two of the patterns, as well as the coor-
dinates x, y, and z, are shown schematically in Fig. 1(a).
The vertical force of the AFM stylus was 3:4 �N, the
writing speed was 15 �m s�1, and the spacing between
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FIG. 1 (color online). (a) Schematic representation of rubbing
pattern for � � 10� (top) and � � 15� (bottom). Period P �
50 �m. Rub line spacing projected onto the x axis is h �
196 nm. (b) Polarized micrograph of sample, showing three
herringbone patterns and the spiral (upper right). The tiny square
in the � � 20� pattern is enlarged in panel (c), which shows the
intensity variation across the pixel interface.
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the lines was h cos�, where h � 196 nm. The half angle,
�, of the herringbone is equal to 20�, 15�, and 10� for the
three patterns. (We note that the scribing conditions are not
precisely identical for the three patterns due to the non-
conical shape of the stylus, wear of the stylus, and asym-
metry of the forces on the cantilever.) In the fourth
quadrant a spiral easy axis pattern was scribed; this forces
a weak bend distortion on the liquid crystal, which makes it
easier to determine the bulk transition temperature TNA
during the course of the experiment. The opposing sub-
strate was spin coated with polymethyl methacrylate
(PMMA; Mw � 101 000; Mn � 39 500), which serves as
a planar degenerate alignment agent [9], such that the
director is planar at the surface and the azimuthal orienta-
tion is controlled by the opposing (scribed) substrate. The
two substrates were clipped together. Using interferometry,
the thickness of the cell at the patterned region was found
to be t � �1:4	 0:2� �m. The cell was placed into an
oven, heated to a temperature of 76 �C, and filled with
the liquid crystal octyloxycyanobiphenyl (8OCB; Merck)
in its nematic phase. 8OCB was chosen in part because of
the large body of temperature-dependent physical parame-
ter data (e.g., elastic constants, smectic correlation lengths)
available in the literature. These data allowed us to deter-
mine that 8OCB has a type-I Sm-A phase over a large
temperature region below TNA, which will be discussed
below. The sample was placed onto the stage of an
Olympus BX51 microscope with crossed polarizers, such
that the pixel interfaces were oriented at an angle of �=8,
i.e., 22.5�, with respect to the polarizer direction
[Fig. 1(b)]. As the birefringence is approximately constant
with temperature near TN _A, this angle was chosen to give
an approximately linear change of intensity with director
orientation angle �, where�� 
 � 
 �. The sample then
was slowly cooled below TNA � 67 �C into the Sm-A
phase. A calibration image was recorded at T � TNA �
450 mK using a CCD camera having resolution 2048�
2048 pixels, where each pixel corresponds to 0:145�
0:145 �m in the sample [Fig. 1(b)]. Later we will see
that the width L of the region over which n̂ varies at T �
TNA � 450 mK is less than 0:2 �m, and thus for all intents
and purposes we can treat the director angle � as under-
going a discontinuous change of 2� across the pixel inter-
face at that temperature. T then was ramped upward at a
rate of 0:67 mK s�1. An image was recorded at 2 s inter-
vals, corresponding to temperature increments of 1:33 mK.

The resulting images were examined to determine the
bulk TNA (with an uncertainty of 	3 mK). The calibration
image (using the � � 20� scribed square) and images at
temperatures closer to TNA were analyzed, whereby the
intensity I�y� across the interface [Fig. 1(c)] was deter-
mined in one region across the central interface in each of
the three (� � 20�, 15�, and 10�) scribed squares. To
mitigate detector noise, I�y� was taken as the average of
five consecutive pixels along the x axis. Owing to diffrac-

tion and pixel averaging, I�y� for the calibration image was
found not to be a step function, but rather varied smoothly
with y. We chose a Lorentzian with full width w at half
maximum—this proved to be better than a Gaussian—as
the ‘‘instrument function’’ and convoluted the Lorentzian
with a step function, i.e., the calibration profile for I�y� as if
no diffraction were present. For w � 1:28 �m, we found
that the resulting convolution excellently mimicked the
actual intensity profile for the calibration image, and as-
certained that the cell’s thickness contributed only
�0:1 �m to w. Then, for all other images, this instrument
function was convoluted with an ad hoc form—the error
function erf�y=u�, where u is a function of temperature—
to simulate the measured I�y�. For each image, u was
adjusted to give the best approximation to the measured
intensity profile; Fig. 2 shows one example. All fits were
excellent, although it should be noted that the fits were
rather insensitive to the steepness of the error function far
below TNA (as also would be the case if some other
function, such as tanh, were used). Thus, we are confident
in data only for T * TNA � 200 mK. Since I / sin2��4 �

2��, the erf�y=u� curves then were transformed into ��y�.
The width L over which the director orientation varies was
taken arbitrarily as the ‘‘10=90 points’’ of the full variation
of ��y�, i.e., for � � 	0:8�. Figure 3 shows L vs �T �
T � TNA for � � 20� and 15�; data are not shown for � �
10� because of the tendency to form domains—sometimes
small—that are misaligned with the local easy axes below
TNA.

This experimentally observed variation L clearly is con-
sistent with type-I behavior. Type-II behavior probably
would result in a nonequilibrium ‘‘freeze-out’’ of a rela-
tively wide spatial region in which bend is effected through
disclinations. Let us now further consider the issue of type-
I vs type-II behavior. Although the value of � that results in
a transition between type I and type II is not known
accurately when thermal fluctuations are important [8]—
this condition applies to our system—we note that Litster
et al. measured the ratio D�T�=K0

33 [10]. Here D�T� is the
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FIG. 2. Measured intensity I�y� vs pixel number at �T �
�24 mK. (1 pixel � 0:145 �m). Solid line shows the fit using
the error function.

PRL 97, 167802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 OCTOBER 2006

167802-2



elastic constant associated with director tilt relative to the
layer normal and K0

33 is the background nematic elastic
constant far from TNA. We take K0

33 � 7� 10�7 dyn [10].
Moreover, sinceK33�T� scales approximately as �jj�T� near
TNA and the ratio of bare correlation lengths below (��0 )
and above (��0 ) TNA for a 3D-XY system is ��0 =�

�
0 � 3

[11], we can use Litster’s data for KN
33�T� in the nematic

phase to obtain KSm-A
33 �T� �
 3KN

33�T�� at the correspond-
ing reduced temperature j�j � �T=TNA in the Sm-A phase.

Thus the bend penetration length ��T� 

������������������������������
3KN

33�T�=D�T�
q

.
Finally, using correlation length data above TNA [10],
applying the ratio ��0 =�

�
0 � 3 at the corresponding value

j�j below TNA, we find that the Ginzburg parameter � �
�=��

k
� �=3��

k
decreases smoothly from 0.19 at j�j �

10�2 to � � 0:09 at j�j � 10�4. These small values are
consistent with type-I behavior in the experimentally rele-
vant region j�j< 10�3. Moreover, the small values of �
(8.5 and 107 nm at j�j � 10�2 and 10�4) relative to L
indicate that n̂ varies in orientation only in a very narrow
slice of the unmelted Sm-A region, and that most of the
variation occurs in the melted (nematic) region centered on
the pixel interfaces.

We now turn to theory. The free energy has three pri-
mary contributions, viz., FSm-A associated with the melting
energy into the nematic phase, FNem due to curvature
energy in the melted region, and FSurf due to the energy
cost associated with director deviations from the easy axes
at the surface. The de Gennes mean-field approach [1] is
not expected to be accurate near TNA, where smectic
fluctuations significantly modify both the free energy and
effective elastic constants. The contribution of critical
fluctuations and ordering to the free energy F (per unit

volume) has been studied extensively [12,13] and can be
written as F � kBTcX	R

�1��d, where kB is Boltzmann’s
constant; Tc is the critical temperature (here equal to TNA),
� is the correlation length above Tc, i.e., �����, d is the
dimensionality, R � 	�1� 	��2� 	�, 	 is the specific
heat critical exponent, and X	 are constants for a given
universality class that depend upon whether the phase is
ordered (� ) or disordered (� ). This form for F is based
upon the divergent part of the specific heat having a form
kBX	��d	�1j�j�2 [13]. Owing to the anisotropy of the
nematic and Sm-A phases, there are two correlation lengths
�k and �? above TNA (which are known experimentally
[10]), yielding FSm-A � kBTNAX�R�1��1

k
��2
? , with X� 


0:031 [14] and 	 � 0:18 for 8OCB [14,15].
Below TNA, regions of large bend distortion melt into the

nematic phase and have an elasticlike energy cost. Small
bend distortions have been treated theoretically [16],
although nonperturbative bend has not. Here we approach
this problem with a simple de Gennes–like scaling argu-
ment [1]. We consider only the free energy functional
quadratic in the complex smectic order parameter  � ~r� �
j j exp�i
�, where
 is related to the position of the layers.
For bend only, we take the nematic director to be n̂� ~r� �
ŷ� �n̂ 
 ŷ� 2x̂y�=L � ŷ� x̂��y�, where the second
term is small and 2� is the total angular bend over the
distance L [1]. The free energy density is given by 1

2 �

�Ckj@ =@yj2 � C?j�r? � 2iq0x̂y�=L� j2 � jajj j2� [2],
where Ck and C? are parameters proportional to the smec-
tic layer compression elasticity B and to D, respectively
[2], where q0 � 2�=‘, and ‘ is the smectic layer thickness.
We include the effect of nonquadratic terms in the free
energy only by choosing appropriate values for these pa-
rameters, specifically a � �Ck�

�2
k

, so as to obtain the
correct correlation length at an equal temperature above
the transition. This free energy functional is identical to the
Hamiltonian of a charged particle in a magnetic field in the
Landau gauge [17]. We therefore can diagonalize it using
techniques applied to the Landau level problem, and find
that the eigenvalues are Landau levels with energies ��m�
1=2�!� jaj � C?k2

z�, where ! � �CkC?�1=24q0�=L, m
is a non-negative integer, the second term is the offset due
to the zero of energy being shifted by a, and the last term is
the kinetic energy in the direction parallel to the ‘‘magnetic
field,’’ where kz is the wave vector along the z axis. A
detailed calculation of the implied free energy is beyond
the scope of this Letter. Here we simply note that above the
critical temperature we have eigenvalues (for plane waves)
of Ckk2

y � C?�k2
z � k2

x� � an, and that the free energy per
unit volume is FNem � kBTNAX�R

�1��1
k
��2
? , where X� 


0:032 [14]. As is known for the magnetic problem, the
discrete sum over m approximates the continuous integrals
over kx, ky. In consequence it is reasonable to use a similar
formula for the free energy, although replacing the corre-
lation lengths with the values they would have when an �
b!� jaj, where b is a factor of order unity that we take to
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FIG. 3. Fitted widths L vs T � TNA for � � 15� (top) and � �
20� (bottom). Theoretical curves are shown for various values of
W’ (in erg cm�2). Typical error bars in L are shown. Uncertainty
in T � TNA � 	3 mK.
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be 1
4 . The result is FNem � kBTNAX�R�1�1=2

k
��1=2
? �q0�=

L� ��1
k
��1
? �

3=2. Note that the elasticity is non-Hookean
and includes only the divergent part due to Sm-A
fluctuations.

The surface anchoring contribution Fsurf to the energy
(per unit volume) to lowest order is 1

2tW’���y� � ��y��2

[18], where W’ is the azimuthal anchoring strength coef-
ficient and is not expected to have important pretransitional
behavior [19]. For simplicity, we assume that ��y� varies
linearly with y. The overall free energy f can be obtained
by integrating FSm-A � FNem � FSurf over one period P
along the y axis, where we assume that a region of width
L has melted into the nematic phase. This results in

 f � �kBTNAX�R
�1��1

k
��2
? �P� L�

� kBTNAX�R
�1�1=2

k
��1=2
? �q0�=L� �

�1
k
��1
? �

3=2L

�W’�
2L=6t:

We then minimize f with respect to L, yielding an implicit
equation for L in which all parameters except for W’ are
known. Figure 3 shows calculated curves for L vs �T for
several different values of W’. The consistency of the
theoretical result with the experimental data is extremely
satisfying, despite the fact that our model is a highly
simplified scaling theory, does not include the background
nematic elasticity K0

33, nor does it include a self-consistent
determination of ��y�. Instead, d�=dy is treated as a
constant, consistent with the spirit of this model. In reality,
the presence of nonzero W’ would tend to concentrate the
bend distortion very close to the pixel interfaces, thereby
modifying FSurf , although relaxation of bend distortion by
means of twist along the z axis results in our assumed
profile for � closer to the PMMA surface. (Keep in mind
that � still must vary from �� to �� over the entire cell
thickness due to the boundary conditions imposed by the
Sm-A regions.) The ‘‘fitted’’ values for W’, of order a few
tenths of an erg cm�2, at first may appear to be large.
However, previous measurements for W’ using a weaker
AFM rubbing force, more widely separated rub lines, and a
shorter mesogen (pentylcyanobiphenyl) resulted in a value
of W’ about an order of magnitude smaller than obtained
here [20]. Thus we believe these values (for much stronger
rubbing) are quite reasonable. Although one also might
expect that W’ for the two different angles � should be the
same, that W’�� � 15��>W’�� � 20�� may be due to
the not-quite-equivalent scribing conditions described ear-
lier. Finally, domains may appear for small � because,
despite a possible increase in W’, Fsurf is small for small
herringbone angles. Therefore nucleation and/or small
temperature gradients may result in such domains.

To summarize, we have presented semiquantitative ex-
perimental evidence of type-I bend-induced melting in a
smectic liquid crystal that is in reasonable agreement with
our simple scaling model.
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Calabria, Rende, Italy.

[1] P. G. de Gennes, Solid State Commun. 10, 753 (1972).
[2] P. G. de Gennes and J. Prost, The Physics of Liquid

Crystals (Clarendon, Oxford, 1994).
[3] S. R. Renn and T. C. Lubensky, Phys. Rev. A 38, 2132

(1988).
[4] J. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak,

and J. S. Patel, Nature (London) 337, 449 (1989); J. Am.
Chem. Soc. 111, 8119 (1989).

[5] I. Dozov and G. Durand, Europhys. Lett. 28, 25 (1994).
[6] M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J.

Güntherodt, Science 252, 512 (1994).
[7] B. Wen, M. P. Mahajan, and C. Rosenblatt, Appl. Phys.

Lett. 76, 1240 (2000).
[8] The crossover point for � between type-I and type-II

superconductors in the presence of fluctuations is not
accurately known and is the subject of current work.
See, e.g., J. Hove, S. Mo, and A. Sudbo, Phys. Rev. B
66, 064524 (2002).

[9] I. M. Syed, G. Carbone, and C. Rosenblatt, J. Appl. Phys.
98, 034303 (2005).

[10] J. D. Litster, J. Als-Nielsen, R. J. Birgeneau, S. S. Dana, D.
Davidov, F. Garcia-Golding, M. Kaplan, C. R. Safinya, and
R. Schaetzing, J. Phys. (Paris), Colloq. 40, C3-339 (1979).

[11] V. Privman, P. C. Hohenberg, and A. Aharony, in Phase
Transitions and Critical Phenomena, edited by C. Domb
and J. L. Lebowitz (Academic, London, 1991), Vol. 14.

[12] M. E. Fisher and P. J. Upton, Phys. Rev. Lett. 65, 2402
(1990).

[13] E. R. Oby and D. T. Jacobs, J. Chem. Phys. 114, 4918
(2001).

[14] P. S. Clegg, C. Stock, R. J. Birgeneau, C. W. Garland, A.
Roshi, and G. S. Iannacchione, Phys. Rev. E 67, 021703
(2003).

[15] P. Jamée, G. Ptsi, and J. Thoen, Phys. Rev. E 67, 031703
(2003).

[16] B. Jacobsen, K. Sanders, L. Radzihovsky, and J. Toner,
Phys. Rev. Lett. 83, 1363 (1999).

[17] See, e.g., J. M. Ziman, Principles of the Theory of Solids
(Cambridge University Press, Cambridge, 1972).

[18] A. Rapini and M. Papoular, J. Phys. (Paris), Colloq. 30,
C4-54 (1969).

[19] M. Vilfan and M. Copic, Phys. Rev. E 68, 031704 (2003).
[20] Bing Wen and C. Rosenblatt, J. Appl. Phys. 89, 4747

(2001).

PRL 97, 167802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 OCTOBER 2006

167802-4


