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We study how the elastic interaction of two-level systems contributes to their relaxational motion.
Evaluating the Mori-Zwanzig memory function in terms of a perturbation series in powers of the

couplings J;;,

we find a null result at second order, which means that interacting pairs of two-level

systems do not give rise to relaxation, yet a finite relaxation rate does occur in fourth order; i.e., a diffusive
band is formed by resonant triples. Our results provide a simple explanation for several puzzling
experimental observations. Regarding the temperature dependence of the sound velocity v ~ InT in
the kHz range, we find that its slope below and above the maximum takes opposite signs but the same
absolute value, in agreement with the measured ratio 1: — 1. Below the relaxation plateau, the internal
friction is shown to vary linearly with 7, in agreement with experiment.
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Sound and microwave propagation in amorphous solids
at temperatures below a few Kelvin show a rich and
unusual behavior [1-4]. At very low T, the sound velocity
increases logarithmically with temperature, reaches a
maximum at about hundred millikelvin, and then decreases
as In7, whereas the sound attenuation, or internal friction
07!, increases with a power law 7¢ and then takes a
constant value over more than one decade in temperature;
the edge of the absorption plateau depends on the external
frequency w. A similar behavior has been reported for real
and imaginary parts of the dielectric function e(w).

These temperature and frequency dependencies are to a
large extent determined by the Debye relaxation of quan-
tum two-level systems (TLS) that are present in almost all
amorphous solids [1-5]. The interaction of the traveling
sound or microwave with the TLS induces a deviation from
the thermal equilibrium occupation of the tunneling states.
The subsequent relaxation of this perturbation has been
studied in terms of phonon absorption and emission, with a
rate 7y, that is proportional to T3 [5]. One thus finds that
the maximum of the sound velocity and the lower edge of
the absorption plateau occur at the crossover temperature
T, where w ~ . Although at first sight rather seducing,
this picture fails to account for the experimental observa-
tions on a more quantitative level [6—11]. First, from the
one-phonon process one expects for the slopes of the
permittivity and the sound velocity below and above T,
the ratio 2: — 1, whereas experiment rather shows a ratio of
1: — 1 [7,8]. Second, the internal friction is predicted to
vary at low temperature as Q' ~ T3, whereas a much
weaker, close to linear, dependence has been measured
[8,9].

As another striking feature, the permittivity of several
dielectric and insulating glasses has been shown to depend
on an applied magnetic field [12—14]. After several theo-
retical attempts based on the Ahanorov-Bohm phase of the
atoms involved in tunnel systems [15-17], coherent echoes
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gave evidence that the magnetic-field effects are related to
nuclear spins [18]; their coupling to TLS is mediated by
nuclear quadrupole moments [19]. Yet in another twist of
the story, it was shown that neither the resonant suscepti-
bility nor phonon-driven relaxation account for the
magnetic-field dependence of the dielectric function [20],
the origin of which seems to be more complex than that of
the echoes.

In this Letter we derive a novel relaxation mechanism
that is based on triples of interacting TLS, and that resolves
the above discrepancies concerning sound propagation. It
has been known for a while that the spectral diffusion
observed in saturation and echo experiments is due to the
longitudinal coupling of TLS [21-23]. More recently, out-
of-equilibrium states with very slow kinetics have been
observed after a dc electric field sweep [24—26]; there is
conclusive evidence that the resulting “dipole gap” and the
dependencies on sweep and waiting times arise from
slowly tunneling TLS with interaction [24,27]. Yet note
that these works do not establish an interaction-driven
relaxation mechanism.

In terms of Pauli matrices, the two-level Hamiltionian
reads %Aoax + 3 Ao, where A is the asymmetry energy
between the two positions o, = *1 and quantum tunnel-
ing with amplitude A is accounted for by the off-diagonal
operator o,, resulting in the energy splitting E =

/A3 + A2, Transverse coupling to a heat bath gives rise
to the relaxational part of the dynamical susceptibility [5]

1 —u? iuy

o YN
cosh(E/2kgT)* w + iu*y

Xrel(@) = kBT<

where angular brackets (...) indicate the ensemble average
with respect to the parameter distribution P(A(, A) =
Py/Ay, with ny the number of TLS per unit volume. We
have introduced the shorthand notation u = Ay/E and i1 =
A/E, and split a factor u? from the rate. After replacing, in
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the rate 7, the splitting E by the thermal energy kzT, we
integrate over E, u and find

1 2
PO[— ln< + 7—) + larctanz} 2)
2 w w

In the limiting cases Yy < w and y > w, one readily
obtains the known results for sound propagation, after
inserting the phonon-driven rate of thermal TLS, y,, =
(3/2m)(g%/ev 1*)(kgT)3, with the mass density @ and the
sound velocity v of the host, and the TLS deformation
potential g [5,6].

Here we study relaxation due to the elastic interaction of
two-level systems. The tunneling motion between the two
wells at o, = *1 gives rise to an elastic deformation field
and an effective interaction %J ;jool, where

Xrel(w) =

2
g Uy
g, =5 20 3

varies with the inverse cube of the distance r;; of TLS i and
j, the parameter U, being of the order eV(nm)3.

Relaxation phenomena and the corresponding rates are
best dealt with in the framework of the Mori-Zwanzig
projection method and a perturbative evaluation of the
memory function [28]. Here we use the formulation given
in Egs. (2.12-2.36) of Ref. [29]; we merely have to replace
the phonon coupling potential with the TLS pair interac-
tion f=1%,.J;,0l0l. The resulting rate u’yy, =
cosh?(E/2kzT)M"(0) is given by the zero-frequency limit
of the spectrum of the longitudinal memory function M(7).

Truncating at second order in the perturbation f, one
finds for a given TLS i

M, (1) —ZZJ

=

(OG5 (1), 4)

with the uncoupled one-particle correlation functions

,cosh[E;/(2kpT) * itE;/h]

GE(1) = u?
@) =u cosh[E;/2kgT]

1

Yet a simple estimate shows that only a few percent of TLS
have a resonant neighbor with |E; — E;| = J;;. Inserting
this constraint and integrating the distribution P(J;;)
Jii =2 over the range where the interaction is effective,
hyph = J;; = kgT, one readily finds the probability of
resonant pairs [30],

W2 =—P0U01n—. (5)

For typical parameters y,;, ~ 107 sec™! (at about 1 K) and
PyUy ~ 1073, one obtains the numerical value W, = 3%
[30-32].

Thus the second-order expression M,(¢) does not decay.
Its spectral function MY (w) is not a smooth function of
frequency but shows sharp resonances at w = *(E; —
E;)/h and, in particular, M7 (w = 0) does not define a

rate. In physical terms this means that, in the framework
of the pair model, the elastic interaction J;; does not give
rise to a band of quasidiffusive excitations, and that there is
no interaction-driven relaxation rate. We stress that this
negative result is not modified when taking spectral diffu-
sion into account [23].

Now we show that relaxation does arise in the next order
of the perturbation series for the memory function, involv-
ing three-spin processes. Pushing the perturbation expan-
sion for M(¢) to fourth order we have

M= S BAGHO) [ar [(ar (G} 06 (=)

{=}jk
+ Gji (t—7)Gr (1)) (6)

with the shorthand notation J; = @#;J7, + @;J3.. The two
terms of the integrand correspond to the rainbow and
crossing diagrams of Fig. 1, the latter of which contributes
little and thus will be discarded.

We estimate the number of resonant triple configurations
Wj. For a given TLS i, the number N, of thermal neighbors
j within the maximum interaction radius ry,, =
(Uo/hyp)'? is given by Ny =2mri, PokpT; ie., i,j
satisfy the condition |J;;| = Ay,,. A resonant triple occurs
if the third TLS & satisfies |E; + E; = E;| = J; this sec-
ond condition is met with the probability W,. Thus we have
W3 = N,W, and, after inserting .,

Wy = —POUOW2- (7)

With the numbers given below Eq. (5) one has W; >
(K/T)?. This means that at temperatures below 1 K, a
given TLS i is involved in several resonant configurations
ijk, ij'k',... where the neighbors j, k, j’, k' participate, in
turn, in more distant triples and thus form a diffusive band.

In other words, all thermal TLS continually exchange
energy by three-body resonant processes. At temperatures
below 100 mK, one has W5 ~ 10°; then the memory spec-
trum M)/ (w) is a smooth function and its zero-frequency
value defines the relaxation rate u?y, = c7M7(0).
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FIG. 1. Fourth-order diagrams contributing to the relaxation

pole of the memory function M,(z). Only the “rainbow” diagram
(a) has been retained, the contribution of the crossing diagram
(b) is significantly smaller. Solid lines indicate TLS propagators
G*. One of the resonant configurations is shown in (c).
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Evaluating the convolution integrals in M,(¢) we find

2

lj k
XS
2E%

l]k) (8)

where the factor §(E;j;) assures the resonance condition,

€., that a combination of the three energies E;, E;, E;
gives zero, and where the temperature factors c¢; =
cosh(E;/2kgT) provide an effective cutoff at E; ~ kgT
and thus restrict the relaxation process to thermal TLS.
An estimation of the average rate is obtained by decoupling
the double sum, y, = wAJy/h, with the quantities J, =
> {uiJ58(E)) and A = Zk(uzﬂ/E%) The minimum
value of relevant couplings Jo = Uy/r} is determined by
the condition that there is at least one resonant triple within
a sphere of radius ry, i.e., 1 =3 wrgW,PokpT. Thus one
has J, = %WWZPO UykpT. The parameter A is obtained by
inserting Y i(...) = 3mPyU, [dE [dJJ*(...), with inte-
gration boundaries given by the inequalities hy,, = Jy =
E; = kgT, resulting in A = W,. Whence the rate

27 kyT
3 WzPOUo "

With typical parameters W, ~ 3% and PyU, ~ 1073 we
obtain the numerical value y,, ~ 10° (T/K)sec™!, which
is not unreasonable in view of the minimum interaction
Jo/h ~ 107 (T/K)sec™!. Beyond the mean-field treatment
of the elastic couplings, one would expect a broad relaxa-
tion spectrum about the mean value 7y,,.

In Figs. 2 and 3 we plot real and imaginary parts of the
complex susceptibility y = x' + iy”, with the rate y =
¥ph T Ve and the values

Yo = ()]

« = 10° (T/K)sec™ !,
Yph = 3 X 107 (T/K)* sec™!

In principle vy,, should be put to zero at temperatures above
1 K; yet in this range one has 7y, < vy, and the
interaction-driven rate is irrelevant in any case. Figure 2
shows for two different frequencies @ = 10° and
10* sec™! the real part y'(w), to which we have added
the “resonant” contribution yl. (@)= —2PyInT; one
easily distinguishes three domains with a logarithmic
temperature dependence Y’ = &Py InT but different pre-
factors £.

At very low temperatures T < T, both rates are smaller
than the external-field frequency v < w; then the relaxa-
tion contribution is negligible, and the slope is given by the
resonant contribution only, ¢ = —2. At high temperatures
T > T, where @ <y < yp, relaxation is dominated by
the phonon-driven mechanism; with x|, (w) = 3Py InT
one readily obtains the slope & = 1. These two cases are
well known [5,6]; a novel feature occurs in the intermedi-
ate range T, <T < T,, where the interaction-driven re-
laxation mechanism is dominant, satisfying o < 7y, and
¥ph < Y- Because of the linear temperature dependence
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FIG. 2. Real part of the complex susceptibility as a function of
temperature, for @ = 10 and 10* sec™!. The slopes £ = *1 are
indicated by the dotted lines. The dashed curve is calculated with
the phonon rate y,, at o = 10* sec™! and shows the slope ratio
2: — 1.

of the rate y, « T, the relaxation susceptibility varies as
Xl = PoInT resulting in the slope parameter & = —1.
These different laws are summarized as

—2P,InT (T<T,)
X =1{-PWnT (T,<T<T,). (10)
P, InT (T. <T)

The minimum of Y’ occurs at y, = yp, i.., at the
temperature 7', that does not depend on frequency, whereas

o
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FIG. 3. Imaginary part of the complex susceptibility as a

function of temperature, for @ = 10° and 10* sec™!. The plateau
value is 77/2. At low temperatures, relaxation of TLS triples with
rate vy, results in the linear law y”(w) o T. The dashed curve
indicates pure phonon relaxation with the rate yy, © T3, leading
to x"(w) o= T°.
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the second crossover at y,, = w results in the law 7, « w.
The above discussion applies to moderate external-field
frequencies of the order of kHz. A different behavior is
expected in the MHz range, where the minimum of y’
occurs at yp, = w, and the only crossover temperature
varies with frequency as T, = w'/3.

Regarding the imaginary part, one finds two different
laws at frequencies in the kHz range (T, < T.),

Pyye/w =T (T<T,)
"o 0t w
O A A )
whereas at high frequencies (T, < T,), there is an inter-
mediate phonon-driven relaxation regime,

Pyye/w =T (T<T,)
Xrel = {Poyph/w «T3 (I.<T<T,). (12
(m/2)Py (T, <T7)

The resonant contribution y/., = 7P tanh(hw/2ksT) is
insignificant in this frequency range.

These results account for several experimental observa-
tions that remained without explanation so far. There has
been a longstanding controversy concerning the slopes of
the logarithmic temperature dependence of both sound
velocity v = vy — 1(¢%/0v}) x'(w) and dielectric constant
g’ = g + 1 p?x'(w). In various experiments it was found
that the ratio of the slopes below and above the minimum
of x' is close to 1: — 1, whereas from phonon-driven
relaxation one expects 2: — 1 [5,6]. This discrepancy is
resolved by the interaction-driven relaxation that leads to
the ratio 1: — 1; cf. Eq. (10). The fact that the low-
temperature slope is not always well defined, could be
simply due to the crossover at T,.

The imaginary part of the susceptibility describes mi-
crowave absorption &’(w) = p?x"(w) and sound attenu-
ation (or internal friction) Q™! = (g%/0v3)x"(w). At
temperatures below 7,, pure phonon relaxation gives
Q! « T3, Yet experimental studies in the kHz range
show a much weaker dependence [8—11], which is close
to the linear law Q! « T that arises from the interaction-
driven relaxation mechanism in Eq. (11). Classen et al.
measured the exponent a of the power law Q! o« T¢
below 30 mK as a function of the external-field frequency;
below 2 kHz they found the constant @ = 1, whereas at
higher frequency the exponent strongly increases and
reaches a > 2 at 20 kHz [9]. This experimental finding
agrees with Egs. (11) and (12), that predict & = 1 at low
frequency (7, < T.) and an intermediate value 1 < o <3
at higher frequencies where T, < T,,.

In summary, we have shown that resonant triples of
interacting TLS give rise to a novel relaxation mechanism.
Its rate vy, varies linearly with temperature and dominates
the phonon rate yp, « T3 below a few hundred mK, thus
providing a simple explanation for the observed slope ratio
1: — 1 of the logarithmic law for the sound velocity and the

linear temperature dependence of the internal friction Q~!.
The magnetic-field dependence of the dielectric function
and the thermal conductivity will be discussed elsewhere.

Stimulating discussions with C. Enss are gratefully
acknowledged.
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