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We investigate the peel front dynamics and acoustic emission (AE) of an adhesive tape within the
context of a recent model by including an additional dissipative energy that mimics bursts of acoustic
signals. We find that the nature of the peeling front can vary from a smooth to a stuck-peeled configuration
depending on the values of dissipation coefficient, inertia of the roller, and mass of the tape. Interestingly,
we find that the distribution of AE bursts shows power law statistics with two scaling regimes with
increasing pull velocity as observed in experiments. In these regimes, the stuck-peeled configuration is
similar to the “‘edge of peeling’’ reminiscent of a system driven to a critical state.
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The process of peeling of an adhesive material from a
substrate is a complicated phenomenon involving molecu-
lar attraction at the interface and kinetic and dynamical
effects. The kinetic nature of the process is clear from the
fact that the peel force depends on the peel rate. The
fracture process during peeling can be either cohesive or
adhesive at low or high peel velocities, respectively. At
intermediate velocities, the fracture process is intermittent,
suggesting that the peeling process results from an inter-
play of time scales. At low peel velocities, there is suffi-
cient time for viscoelastic glue to fully relax, while at high
velocities, the glue essentially behaves like a solid [1]. The
intermittent behavior is observed when the viscoelastic
time scale is of the same order as the peel rate time scale.
It is an everyday experience that the peeling process is
always accompanied by a characteristic audible noise
[2,3]. However, the mechanism leading to the acoustic
emission (AE) has remained ill understood. Moreover,
the inhomogeneous deformation of the peel front results
from the destabilization of a uniformly advancing peel
front [4]. To the best of our knowledge, we are not aware
of any model that investigates the dynamics of the peeling
front and the associated acoustic emission. We address
these two issues within the context of a model for the
peeling of an adhesive tape.

Experiments on peeling of an adhesive tape mounted on
aroller [2] show that the peel force function has two stable
branches separated by an unstable one. The pull force
exhibits a rich variety of behavior ranging from sawtooth
to irregular waveforms [2,5,6]. A dynamical analysis of the
force waveforms and the AE signals reports chaotic dy-
namics at the upper end of pull velocities [7]. However, as
there are no models, no further insight into the origin of
acoustic emission has been possible.

A relevant model introduced in [2] has been subse-
quently studied by others (Refs. [3,5,6]); it belongs to the
category of differential algebraic equations (DAE) and is
singular, requiring an appropriate DAE algorithm provided
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in Ref. [8]. (For this reason, the results in Ref. [5] are the
artifact of the method followed.) Recently, we modified
these equations into a set of ordinary differential equations
(ODE) by including the kinetic energy of the stretched
tape. The ODE model not only supports dynamical jumps
across the two stable branches, but also it displays a rich
dynamics [9]. Here, we extend this model to include spatial
degrees of freedom to study the contact line dynamics of
the peeling front. The inclusion of a local strain rate
dependent Rayleigh dissipation functional along with the
kinetic energy of the tape forms a basis for converting the
potential energy stored in the stretched tape into kinetic
energy, providing a mechanism for explaining qualitative
experimental features on AE [10,11].

Figure 1(a) shows a schematic representation of the
experimental setup. An adhesive roller tape of radius R is
mounted on an axis passing through O and is pulled at a
constant speed V by a motor positioned at O’. Then, the
line PQ represents the peeling front. Several features of the
setup can be explained by considering the projection onto
the plane of the paper (OPO'). The tangent to the contact
point P (representing the contact line PQ) subtends an
angle 0 to the line PO’. Let the distance between O to O’
be [ and the peeled length of the tape PO’ be L. If P
subtends an angle a at O with the horizontal OO’, the
geometry of the setup gives Lcosf = —Isina and
L sinf = [cosa — R. As the local velocity v at P under-

FIG. 1 (color online). (a) A schematic plot of the experimental
setup. (b) Plots of ¢(v*) as a function of v for V* = 1.45.
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goes rapid bursts during rupture, we have V = v + i —
L = v+ it + Rcosfa. Let u(y) be the displacement with
respect to the uniform “stuck” peel front, and let v(y),
0(y), and a(y) be defined at every point y along the contact
line. As the tape of width b is pulled with a velocity V, the
above equation generalizes to

L "ty — o) = a(y) = Reosd()a()]dy = 0. (1
o ﬁ) [V — v(y) — iy) — Reosf(y)a(y)ldy = 0. (1)

However, as we are interested in the dynamics of the
contact line of the softer glue material (whose elastic
constant is 3 orders less than that of tape material), the
effective spring constant k, of the contact line is assumed
to be much less than that of the tape material k,. Then, as
the entire tape is pulled with a velocity V, the force along
PO’ equilibrates fast, we can assume that the integrand in
Eq. (1) is zero for all y.

We derive the equations of motion of the contact line by
considering the Lagrangian £ = Ug — Up, where U and
Up are the kinetic and potential energies, respectively. The
kinetic energy is given by Ux = 5 [0 é[a(y) + %]%ly +
3[4 pli(y)Jdy, where the first term represents the rota-
tional kinetic energy of the roller tape and second term
arises due to the kinetic energy of the stretched part of
the tape. Here, ¢ is the moment of inertia per unit width of
the roller tape and p the mass per unit width of the length
L. The total potential energy (PE) U P of the stretched
ribbon can be written as Up = f Flu()Pdy + 1%

f k b[au(y)]Zdy The total d1551pat10n has two contrlbu-
AE T} fo [ fw(y))dvdy +1 fb Lp l(;(}y)]zd v,

where f (v) physically represents the peel force function
assumed to be derivable from a potential function ®(v) =
[ f(v)dv (see Ref. [9]). The second term, denoted by R 4,
represents the dissipation arising from the rapid movement
of peel front given by the Rayleigh dissipative functional.
This has the same form as the energy dissipated in the form
of acoustic emission during abrupt motion of dislocations
in plastic deformation, i.e., Exg © €*(r), where é(r) is the
local plastic strain rate [10]. Hence we interpret R g as the
energy dissipated in the form of AE signals. Indeed, such a
term has been successfully used to explain several features
of AE signals in martensites [11].

We rewrite all the energy terms in a scaled form using a
timelike variable 7 = w,t, where w2 = k,/(bp). Let fax
and v,,, be the maximum value of f (v) and v on the left
stable branch. Then, defining a length scale d = fp./k:,
we introduce u = Xd = X(fmu/k.), | = 'd, L = L*d,
and R = R*d. The peel force f can be written as f =
Smax®(¥), where v¥ =v/v.w,d and V°=V/v,.w,d
are the dimensionless peel and pull velocities, respectively.
Here, v, = v,/ ®,d is the dimensionless critical veloc-
ity at which the unstable branch starts (in the scaled units,
the unstable branch begins at v* = 1). Defining Cy =
(fmax/kt)z(p/f) kO =k bz/(k aZ) Yu = r w /(k a )

and y = ar, where a is a unit length variable along the

tions,

peel front, the scaled local form of Eq. (1) is

N

= (VS = v¥)v, + Rsé(sina)d. (2)

The scaled kinetic and potential energies can be written
as UK o [V a(r) + O dr + L[ X () Pdr

2c;
and U3}, = b/ “X*(r)dr+% [4 b/ “[ax(r)]zdr, respectively.

The total d1ss1pat10n in a scaled form is R* = 1 X

b9 [ i (N)dvidr + 1 [0y [EORgr ¢ (vY) is the
scaled peel force that can be obtained by using in Eq. (9)
of Ref. [9] shown in Fig. 1(b). We shall refer the left branch
AB as the “stuck state”” and the high velocity branch CD as
the peeled state.

Using a(r), a(r), X(r), and X(r) as generalized coordi-
nates in the Lagrange equations of motion, d X

6R — d oL _ iL IR’ __
(aa(r)) aa(r) say — 0 and dT(aX(r)) X | 9x( =0,

we get the equations of motion as

v 0 I5/L" sina
. _ Y _ RS s
« N AR T A
2X K ZX
X——X+koa ¢() X @

(1 + I/L° sina) Va2

Equations (3) and (4) are still not suitable for further
analysis as they have to satisfy the constraint equation
(2). In the spirit of mechanical systems with constraints
[12], we obtain the equation for the acceleration variable
%(r) by differentiating Eq. (2) to be

oo (=X +EL{a’[cosa — R*I*(802)?] + sinac‘i}). 5

Ve

Equations (2), (3), and (5) were solved by discretizing
and using an adaptive step size stiff differential equations
solver (MATLAB package) for open boundary conditions.
The initial conditions were chosen from the stuck state
[i.e., AB branch of ¢(v*)] with a small spatial inhomoge-
neity in X that approximately satisfies Eq. (2). The system
is evolved until a steady state is reached before the data are
accumulated. We have studied the dynamics over a wide
range of values of Cy, V*, and vy, keeping R* = 0.35, I* =
3.5, kg = 0.1, N =50, and N = 100. Note that v, is an
important parameter which, however, is determined once
f(v) is given. [The values of the unscaled parameters, for
example, k, ~ 1000, are fixed using the data in Ref. [13].
f(v) used here preserves the major features of the experi-
mental curve such as f. ~280 N/m at v, =
0.05 cm/s with a velocity jump to 16 cm/s. See also [8].
Note, however, we do not use the dynamization scheme
used in [8].] These equations exhibit rich dynamics which
can be classified as the uniform, rugged, and stuck-peeled
nature of the contact line. In the unscaled variables, the
results reported here correspond to changing the tape mass
(m = pb) while keeping I(= £b) constant.

First, consider the results for C; = 0.00788 (v, =
0.0024) and V* = 1.45 (i.e., high inertia, low mass, and
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low pull velocity regime in the unscaled parameter space)
as we decrease the dissipation parameter y, from 1.0 to
0.001. We observe a wide variety of events, some of which
are illustrated in the plots of the peel velocities v{(7). For
instance, all spatial points peel together for y, = 1.0. As
we decrease vy, to 0.1, keeping other parameters fixed, the
contact line profile becomes rugged even though all points
peel nearly at the same time as seen in Fig. 2(a).

Intuitively, high v, implies that velocities of neighbor-
ing points are coupled strongly and hence are not allowed
to follow their local site dynamics Thus, the total dissipa-
tion R4g(r) =1y, :(X;41 — X;)* is vanishingly small
when peeling is coherent. In contrast, for low 7y, [say, 0.1
as in Fig. 2(a)], the coupling between neighboring veloc-
ities is weak and the local dynamics dominates. This means
more ruggedness and hence higher dissipation.

As vy, is decreased to 0.01, the peel front exhibits two
types of configurations depending on whether the system is
on the AB branch entirely, or partly on both the CD and AB
branches of ¢. When on the CD branch, the ruggedness is
substantially higher than that for y, = 0.1 [Fig. 2(a)].
Once the peeling process starts, the peel front breaks up
into regions of stuck and peeled segments as shown in
Fig. 2(b). This configuration results from the orbit jumping
between the low and high velocity branches of ¢(v?*). A
typical phase plot of X7 versus v} is shown in Fig. 3(a) for
i = 25 with other points differing only in phase. Thus, as
the phase difference along the peel front builds up to a
value equal to the phase difference between the orbits that
are in the stuck and the peeled states, the stuck state
changes to a peeled state or vice versa.

Now consider the dynamics for higher mass (Cy =
0.788, v, = 0.024) and V* = 1.45 as we decrease y, =
1.0 to 0.001. For this entire range of vy,, the peel front
displays stuck-peeled segments for all times as shown in
Fig. 3(b). There is a dynamic equilibrium between the
peeled and stuck segments with the segments that are stuck
at some instant getting unstuck at another instant and vice
versa. Further, as is clear from Fig. 3(b), the average of the
velocity jumps along the peel front is smaller than the low
mass case (compare Fig. 2). Concomitantly, the number of
stuck segments increases with each stuck segment having a
only few stuck points better illustrated in an instantaneous

velocity
velocity

time 7.4 25
0 position

9.15 ¢

position

FIG. 2 (color online). Plot of the peel velocity configuration
for C; = 0.00788 and V* = 1.45. (a) A rugged peel front for
v, = 0.1. (b) Illustration of a stuck-peeled configuration for
v. = 0.01.

plot of vj — 1 shown in Fig. 3(c). Moreover, from Fig. 3(c),
it is clear that even the points that are in the stuck state are
barely stuck. Further, it is clear that the orbit spends con-
siderable time around the maximum which is the critical
peel value [Fig. 3(d)]. Thus, Figs. 3(b) and 3(c) correspond
to the verge of a peeling state. The “edge of peeling”
picture remains unaltered with time even though the stuck
points themselves change. The largest Lyapunov exponent
is 0.15 (for N = 50) and hence this state is spatiotempor-
ally chaotic [Fig. 4(a)].

In experiments, the nature of the AE signals changes
from burst type to continuous type as the pull velocity is
increased. In the model, the rate of dissipated energy
R4 = —dEag/dr represents the AE bursts. We have
studied the statistics of R as we increase the pull veloc-
ity keeping the tape mass low (C; = 0.00788, v, =
0.0024). As in experiments, for small vy,,, at low velocities,
we find that R exhibits bursts followed by a quiescent
state as shown in Fig. 4(b), which is similar to Fig. 4(a) of
Ref. [3] (for the AE amplitudes). [R % shown in Fig. 4(b)
corresponds to Fig. 2(b).] In contrast, for high pull veloc-
ities and low mass, and for a range of y,, R4y exhibits
continuous bursts as shown in Fig. 4(c), which is again seen
in experiments [Fig. 4(b) of Ref. [3]]. High mass and low
pull velocity also exhibits continuous bursts.

Denoting Ey to be the amplitude of Ry (i.e., from a
maximum to the next minimum), for high pull velocities
and low tape mass (Cf = 0.0078, v. = 0.0024, V* =
5.93), we find that the distribution of the magnitudes
D(ER) shows a power law for all values of vy, investigated,
i.e., D(Eg) ~ Ex"*. Further, D(E) shown in Fig. 4(d)
exhibits two distinct scaling regimes as for case of the
distribution of the AE amplitudes (A) in experiments.
The value of mg ~ 0.6 for the small amplitude regime,
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FIG. 3 (color online). (a) The phase plot for i = 25 for Cy =
0.007 88 and V¢ = 1.45, and 7y, = 0.01. (b) Plot of an “edge of
peeling” configuration for Cy = 0.788, V* = 1.45, and vy, =
0.01. (c) The corresponding instantaneous plot of an edge of
peeling configuration. The dashed line represents the critical peel
velocity v« = 1. (d) The corresponding phase plot for i = 25.
The bold lines in (a) and (d) represent ¢ (v?).
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FIG. 4 (color online).  (a) Spatiotemporal chaotic plot for C; =
0.788, V¥ = 1.45, and 7y, = 0.01 (low — high peel velocity:
red — yellow — green — blue — pink; in gray levels, dark to
white corresponds to low to high peel velocity). (b) Plots of
R4g(7) vs time 7 for C; = 0.007 88, V* = 1.45, and y,, = 0.01.
() Ryg(r) for C,=0.00788, V* =593, and vy, =0.01.
(d) The corresponding distribution D(E) of the amplitudes Eg
showing two scaling regimes.

while that for large amplitudes that has a substantial scatter
is about 1.8. The corresponding exponent values are m, ~
0.3 and 3.2 [13]. Using the fact that energy E = A2, we get
mg = (1 + my,)/2. Inserting the values of m,, we get the
corresponding exponents to be mg ~ 0.65 and mg ~ 2.1,
which are close to the values predicted by the model
considering the scatter for the latter. In contrast, for the
high mass and low velocity case, we find a single scaling
regime with an exponent my ~ 0.69.

Thus, several qualitative features of the peel front dy-
namics observed in experiments are reproduced by the
model. For example, the characteristic features of the AE
signals observed in experiments; namely, noisy AE bursts
for low pull velocity changing over to continuous bursts at
high pull velocity are reproduced. For high pull velocities
(low tape mass), D(Eg) exhibits two scaling regimes.
However, comparison with experiments is made difficult
due to the paucity of quantitative results except for the
values of the exponents in the two scaling regimes, which
is in reasonable agreement with the model. Even so, our
study suggest that if one wants a smooth peeling, one
should peel at low velocity using high viscous dissipation.
Significantly, the power law is seen at high pull speeds and
thus is unlike self-organized criticality.

The power law statistics for high pull velocities arises as
a competition among the time scales due to the inertia of
the tape, dissipation, and imposed velocity, which is small
at high V¢, leaving very little time for internal degrees of
freedom to relax. The nature of the peel front ranges from
synchronous peeling for large vy, to the rugged type for
small y,. The “stuck-peeled” configuration is qualita-
tively similar to the inhomogeneous peel fronts observed
in experiments [4] as also to the thin viscous film interface
[14]. Interestingly, the ‘““verge of peeling picture” of the

peel front [Figs. 3(b) and 3(c)] is similar to the edge of
unpinning picture of dislocations in the Portevin—
Le Chatelier effect [15]. This is one of the few cases where
the power law emerges purely from deterministic
dynamics.

Here, it is worth commenting on the assumption that the
integrand of Eq. (1) vanish at each point y which is valid
when L > b and when shear modulus ks is small. In
principle, one should have a long range term of the form
kg [t[u(y) — u(y")Pdydy'/2ly — y'|. An equilibrium cal-
culation with u(y) defined at one end shows that the shear
strain energy is less than 1% compared to the total even for
not too small »/L = 0.2. This lends support for the PE
term used. We have also carried out numerical calculations
by retaining this term. For small &, results are not affected
as it should be expected. However, for relatively high
values of kg, the solutions that were smooth break up
into stuck-peeled configurations.

Here, the adhesive properties of the glue are included
only in an indirect way through the peel force function (and
low effective spring constant of the peel front due to
adhesive glue) and that of AE through the Rayleigh dis-
sipation function. While the model recovers most dynami-
cal features of peeling, issues that depend critically on the
finite thickness of the adhesive material (fibril formation)
cannot be addressed within the scope of the model.
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