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Heterodyne Mixing of Laser Fields for Temporal Gating of High-Order Harmonic Generation
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The concept of heterodyne mixing of laser fields is theoretically applied to the process of high-
harmonic generation to enhance and modulate the kinetic energy of the active electron on subcycle time
scales. A very small amount of intensity in the heterodyne field creates a significant modification of the
electron kinetic energy, due to its amplification by the strong fundamental field in the kinetic-energy term,
in which the heterodyne mixing occurs. Quantum calculations are carried out to verify the predictions of
the classical results, demonstrating very good qualitative and quantitative agreement. Applications of the
heterodyne-mixing concept are the extension of the harmonic cutoff to higher photon energies and the

temporal gating of attosecond pulse production.
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High-order harmonic generation (HHG) is one of the
most intriguing processes in nonlinear optics, both from a
fundamental physics perspective as well as for its applica-
tions. Applications of HHG now include the production of
the shortest pulses of light, with durations less than one
femtosecond [1,2], nonlinear optics with soft x-rays [3,4],
and tomographic imaging of molecular orbitals [5]. On the
fundamental side, HHG is a fascinating example of non-
linear physics, where simple pictures can be used to de-
scribe strongly nonperturbative processes. For example,
the highly nonlinear process leading to the emission of
high-energy photons in HHG can be conceptually under-
stood by classical mechanics [6]: the outermost electron of
an atom in a highly intense laser field is ionized, driven
away from and back to its parent ion by the alternating
electric field of the laser that accelerates it, eventually to
recombine, emitting the sum of its kinetic energy and the
ionization potential into a high-energy photon that is per-
fectly synchronized (coherent) with the laser field. In this
Letter, we show that key aspects of HHG can be enhanced
through heterodyne mixing of laser fields.

Heterodyne mixing is commonly used in various areas of
science and engineering as a phase sensitive means of
detecting and characterizing small oscillatory signals.
Examples of applications in quantum optics are the mea-
surement of the quantum state of light [7] and the spectral
phase analysis of nonlinear optical signals [8]. The hetero-
dyne technique is based on the superposition of a weak
signal wave with a strong coherent reference wave, termed
the local oscillator. Mixing of the two light fields occurs in
the intensity of the combined fields by virtue of the qua-
dratic dependence of the intensity on the total electric field.
The cross term is a product of the field amplitudes of both
the local oscillator and the signal field and it depends on
their relative phase, resulting in a characteristic intensity
beating if the two fields do not coincide in frequency. Since
the intensity modulation is proportional to the strong local
oscillator field, the heterodyne detection of the signal field
can be far more sensitive than the signal field alone.
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We present theoretical evidence that heterodyne mixing,
when applied to HHG, leads to enhancement of the har-
monic cutoff energy and efficient subcycle control of the
active electron. The fundamental field acts as the local
oscillator for the weak superimposed signal field. The
relevant mixing of the two copolarized fields occurs
through the kinetic energy of the active electron as opposed
to the combined intensity of the two fields, which is the
case in conventional heterodyne mixing. Because of the
increased sensitivity of the heterodyne method, a low-
intensity signal field at a different frequency is sufficient
to result in significant enhancement and modulation of the
kinetic energy of the returning electron. Since the hetero-
dyne mixing of the two fields is sensitive to the relative
phase of the fundamental (local oscillator) and signal
fields, it breaks the dynamical symmetry that results in
the half-cycle periodic emission of attosecond pulses in the
case of a monochromatic fundamental. For the same rea-
son, it is possible to employ the signal field (which we term
control field in the following) as an efficient means for
temporal gating of the harmonic emission, as will be de-
tailed below. Harmonic heterodyne mixing is a new con-
cept employed to understand bichromatic harmonic
generation [9]. Moreover, the recently predicted phenome-
nological result of period doubling [10] in an attosecond
pulse train by adding a second harmonic field to the
fundamental field can be explained as a special case of
the heterodyne-mixing mechanism considered here. The
appearance of even-order harmonics reported in earlier
studies of high-harmonic generation with two-color laser
fields [11]—even at very low intensities of the second
color field—can now be physically understood by the
mechanism presented here.

We discuss the general concept of high-harmonic het-
erodyne mixing and present two important applications:
HHG at photon energies exceeding the standard cutoff
energy and the temporal gating of harmonic emission.
The latter can lead to isolated attosecond pulses with
femtosecond multicycle duration driver pulses that are
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directly available from commercial Ti:sapphire chirped-
pulse amplification systems, without the need for further
pulse compression. Moreover, HHG is only one applica-
tion of the presented heterodyne-mixing mechanism. The
conceptual framework can be transferred to any process
involving strong-field driven electron dynamics—includ-
ing but not limited to nonsequential double ionization,
above-threshold ionization, relativistic electron motion in
ultraintense laser fields, and plasma dynamics—due to the
classical nature of the control mechanism.

Considering first the quasiclassical picture of HHG [6],
we can calculate the electron kinetic energy by integrating
the classical equation of motion with the initial condition
of the electron being at rest immediately after ionization
that occurs at time #,. The fundamental and control fields
are E,(t) = E;cos(w,f) and E,(t) = E, cos(wyt + ¢)
[atomic units (a.u.) are used throughout], respectively,
with amplitudes £; and different frequencies ;. We limit
ourselves to the case of a weak control field £, = aFE,,
with a < 1. The relative phase between the two fields is
denoted by ¢. The classical velocity v of the electron at the
time of recombination with the ion ¢, is

v= T ﬁ"[E] (1) + Ex(0]dt = vy + vy, M

where v, and v, denote the velocity components due to
acceleration in the fields E,(¢) and E,(z), respectively, for
an electron ionized at time f#; and recombining at time ¢,:

N

E
v = w—ll[sin(a)lto) — sin(wt,)] (2)

N

E
v, = w—i[sin(wzto + @) — sin(w,t, + @)] 3)

Heterodyne mixing of the two fields occurs through the
kinetic energy of the electron in the presence of the two
fields, which can be written as
En = %(vl + v,)? = %(‘U% + 03+ 2vv,). @)
While the kinetic energy of returning electrons produced
by the control field alone (v3/2 = E,4,,) can be very small
compared to the contribution of the fundamental field
alone (v%/2 = Eyin1), the cross term (v v,) is significantly
larger. This is the essence of the heterodyne effect: The
cross term “‘amplifies” the small velocity component v,
arising from the weak control field by the large velocity
component v originating in the strong local oscillator field
of the fundamental. Note that the heterodyne mixing here
occurs in the square of the velocity components (vector
potentials or integrals of the electric fields) rather than the
square of the electric fields of signal and local oscillator, as
is the case in conventional heterodyne mixing.
In the following, we discuss the case of a control field
taken as the subharmonic of the fundamental at one half of
the fundamental frequency. Typically in HHG, the kinetic

energy of the fastest electron and thus the cutoff energy of
the high-harmonic spectrum is £, = I, + 3.17U,, (I, and
U, being the ionization potential and the ponderomotive
potential U, = E?/4w?, respectively). This quantity de-
pends linearly on laser intensity and thus quadratically on
the electric field of the light. However, for the case of
kinetic-energy heterodyne amplification of a weak control
field (a = 0.1), Eq. (4) indicates a linear dependence of the
cutoff energy on the control field velocity v,. Because of
the linear dependence of the velocities v; on the electric
field amplitude Ei of the laser [see Egs. (2) and (3)], we
should therefore expect linear scaling of the cutoff energy
with the weak laser control field amplitude EQ, instead of
its intensity. This is shown in Fig. 1(a), where the maxi-
mum kinetic energy of the returning electron is calculated
classically and shown as a function of the ratio a of the
control field with respect to the copolarized fundamental
(local oscillator) field for a fixed relative phase of ¢ = 0. A
clear linear dependence is visible. For larger control field
amplitudes the time of ionization ¢, and recombination f,
become significantly dependent on the control field, result-
ing in a very slight deviation from linearity as can be seen
in the figure.

To verify the results quantum mechanically, we perform
a one-dimensional numerical integration of the time-
dependent Schrodinger equation. The high-harmonic spec-
trum is obtained by Fourier transforming the time-
dependent dipole acceleration expectation value according

~
r=}

harmonic
intensity
arb. units

[ 1x1 0]-5

N
IS}
—
D
=
@
=}

»
=}
S

1x10-4
1x10-3
0.01
0.1

1

10
B 100

el

©
w & O
oS o

harmonic order

@
o

©
IS

maximum electron kinetic energy [Up]

[l
[N}

000 002 004 006 008 0.10
control field fraction a

1cont$o| elaectri:fieltf[10‘63a.u,7]

FIG. 1 (color online). Demonstration of linear heterodyne
weak-field amplification of electron kinetic energy (a) and
high-harmonic cutoff photon energy (b) by varying the control
field strength. The weak control field is assumed to be the
subharmonic of the fundamental field at half its frequency and
at a relative phase of ¢ = 0. The classical calculation (a) shows
a linear scaling of the energy of the fastest electron returning to
the parent ion. The solid line is a linear fit to the calculated data
points. The same linear scaling is apparent in the quantum
simulation (b) (details see text), where the cutoff harmonic order
(photon energy) (dashed line) scales linearly with the control
electric field strength, which is varied up to 1/10th of the
fundamental field strength. The horizontal dotted line shows
the original position of the cutoff harmonic order at zero control
field. While the ponderomotive potential of the largest control
field is only a minor fraction (1/25) of the fundamental one, the
changes in kinetic and cutoff energy beyond the ionization
potential are ~30% due to the heterodyne mixing through the
kinetic energy of the electrons, Eq. (4).
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to Ehrenfest’s theorem [12,13]. A model argon atom is
considered to interact with the combined field of two
Gaussian laser pulses of 24 fs FWHM (full width at half
maximum) duration at a center wavelength of 800 nm
(fundamental) and 1600 nm (control field). The field
strength of the 800 nm pulse was kept constant at
0.08 a.u. and the field strength of the 1600 nm control field
was varied from 0 to 8 X 1073 a.u., the upper limit thus
again corresponding to the case a = 0.1. Plotting the har-
monic spectrum versus the control electric field [Fig. 1(b)]
shows the linear dependence of the harmonic cutoff energy,
clearly indicating the validity of the heterodyne effect as
observed in the classical case. This effect can therefore be
applied to extend the harmonic cutoff to higher photon
energies without having to significantly increase the laser
pulse energy (conversion of only <0.12 = 1% intensity to
the control field is needed) or to decrease the pulse dura-
tion. At the same time, the experimental challenge to
produce the second light field is minimal, since only a
very small quantity of fundamental light has to be con-
verted. The amount of 1% intensity is far below the typical
conversion efficiency achieved in experiments on paramet-
ric down-conversion [14], especially at the degeneracy
point (w — ®/2) considered in the above example.

We now turn to another application of this effect, which
is the temporal gating [15] of high-harmonic generation. In
Fig. 2(a) we plot the classically calculated kinetic energy
of the electron that returns to the parent ion versus time of
return. If only a single-frequency fundamental field is
applied, the well-known [6] maximum of ~3.17U, is
observed. If we consider conversion of 1% fundamental
intensity into a subharmonic at half of the initial frequency
with O relative phase and recalculate the kinetic energies
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FIG. 2 (color online). Kinetic energy of the electrons returning
to the parent ion as a function of time. A classical calculation is
shown in (a) for the case of a single fundamental field (open
triangles) and after conversion of 1% intensity into the subhar-
monic at half the fundamental frequency and a relative phase of
0 (solid dots). A clear symmetry breaking of the kinetic energy in
adjacent cycles is observed, creating electron energies up to
4.2U,. The conventional (single-frequency limit) of ~3.17U,
is indicated by the dashed line. A quantum-mechanical simula-
tion (details see text) of HHG in argon atoms is performed to
verify the validity of the classical picture (b). The Gabor trans-
formed dipole acceleration response of the single-atom system
shows that the photon energy emitted as a function of time is in
very good agreement with the classical calculation.

for the returning electrons, a significantly different sce-
nario is observed. The symmetry of adjacent half-cycles of
the fundamental field is broken by the subharmonic field
and the energies of the returning electrons are different in
neighboring half-cycles. In particular, the kinetic energy of
the fastest returning electrons occurs only one out of four
fundamental half-cycles (corresponding to one optical
cycle of the subharmonic) and has 32% higher electron
energy upon return to the parent ion compared to the
highest other half-cycles. According to the mechanism of
HHG [6], this allows the production of the highest photon
energies of harmonics only once within two optical cycles.
This complete half-cycle symmetry breaking for the high-
est photon energies also provides physical insight into why
even at low values of the field ratio a ~ 0.1 even harmonic
orders emerge at equal strength in the cutoff region of the
harmonic spectrum observed in earlier works [11].

To demonstrate the validity of the classical considera-
tion, the single-atom high-harmonic emission is simulated
for the same conditions as used in Fig. 1(b). To analyze the
photon energy emitted from the atom as a function of time,
we perform a Gabor transform (windowed Fourier trans-
form) as was previously applied for the analysis of HHG
[16,17]. It is defined as

I, I )2
Gt w) = ‘ f; a(w') exp<— (“’072“’))

2
X exp(io't)do' |, (%)

where d(w') is the dipole acceleration expectation value in
the frequency domain and () is the spectral window width,
which needs to be chosen large enough to obtain sufficient
(subcycle) temporal resolution. We chose ) =2 eV/h
and the result is given in Fig. 2(b). Different maximum
harmonic orders are produced in adjacent half-cycles, as is
expected from the classical calculation. The agreement of
the classical [Fig. 2(a)] and quantum-mechanical calcula-
tion [Fig. 2(b)] is remarkable and underlines once again the
validity of the classical approach to understand high-
harmonic generation. In addition, this calculation points
out that even control of attosecond pulse generation can be
understood from a classical perspective, which will help
towards the future goal of inventing and applying control
techniques in the soft x-ray attosecond region.

For the conventional method of isolated attosecond
pulse generation, the femtosecond driver pulse needs to
be short enough to permit only half an optical cycle to
generate high-energy photons in the harmonic spectrum.
High-pass filtering of the harmonic spectrum separates
these photons to produce an isolated attosecond pulse
from the attosecond pulse train consisting of lower-order
harmonics [2]. Applying the heterodyning technique ex-
plained here, the restriction on the driver pulse duration can
be relaxed by a factor of 4, since now only once within two
fundamental cycles are the higher-energy harmonics emit-
ted, using the weak subharmonic as a gating field. Instead
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FIG. 3. Application of the heterodyne technique for temporal
gating yields an isolated attosecond pulse (shaded area) pro-
duced with a field (solid line) consisting of an 800 nm funda-
mental field of 24 fs FWHM pulse duration with 1% intensity of
the subharmonic at 1600 nm. The intensity of the weak satellite
pulse is less by more than an order of magnitude. An enlarged
view of (a) is shown in (b).

of having to use a ~6 fs pulse of the commonly used
800 nm central wavelength for isolated attosecond pulse
production, a 24 fs pulse is sufficient if ~1% of the
fundamental is converted to the 1600 nm subharmonic
intensity. The consequence of this approach is that pulse
compression methods would no longer be necessary for
single attosecond pulse generation, since ~24 fs pulse
durations are readily accessible directly from commercial
Ti:sapphire multipass amplification systems.

Figure 3 shows the calculated result for the attosecond
pulse emitted after high-pass filtering above a frequency
corresponding to the 48th harmonic as indicated by the
dashed line in Fig. 2(b). An isolated attosecond pulse of
370 as FWHM duration is generated, only accompanied by
a minor satellite pulse which is less intense by more than an
order of magnitude.

In conclusion, the concept of kinetic-energy heterodyne
mixing of a weak control field with the fundamental field
as a local oscillator is developed for high-harmonic gen-
eration. While the control field alone would not signifi-
cantly accelerate the active electron in high-harmonic
generation, the mixing and amplification of the weak field
with the strong fundamental field in the electron kinetic-
energy term allows for significant modulation of the kinetic
energy of the returning electron, resulting in an enhance-
ment of the harmonic cutoff energy. Another application of
the mechanism is the temporal gating of high-harmonic
generation, possibly enabling the production of isolated
attosecond pulses with driving pulses that are longer than
the conventional limit by a factor of 4. It should be noted
that the case of the subharmonic field as the control field is
just one example and the heterodyne-mixing process can
be used with arbitrary frequencies that might be beneficial
for producing and shaping attosecond pulses and pulse
trains in the future. In most general terms, the presented
heterodyne approach—due to its classical nature—can be

applied in any strong-field process to control electron
dynamics.
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