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Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider
suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations,
challenging theorists to explain why this fluid is so nearly ‘‘perfect.’’ It is therefore vital to find
quantitative experimental information on the viscosity of the fluid. We propose that measurements of
transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to
estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements
can reduce this uncertainty.
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Measurements of elliptic and radial flow at the
Brookhaven National Laboratory Relativistic Heavy Ion
Collider (RHIC) are described by viscosity-free hydrody-
namics, indicating that the quark-gluon system produced in
these collisions is a nearly perfect liquid [1–4]. In particu-
lar, the strong suppression of flow due to shear viscosity
predicted by weak-coupling transport calculations is not
observed [3]. This result is exciting, because a small vis-
cosity relative to the entropy density of the system may
indicate that the system is more strongly coupled than
expected: The collisional shear viscosity is proportional
to the mean free path, which is shorter when the coupling is
stronger. But is the viscosity really small? Hirano et al.
point out that color glass condensate formation may pro-
duce more elliptic flow than considered in Refs. [2,3],
requiring a larger viscosity for agreement with data [5].

We seek an experimental probe of viscosity that is
independent of elliptic flow. To that end, we propose that
transverse momentum correlation measurements can be
used to extract information on the kinematic viscosity

 � � �=Ts; (1)

where � is the shear viscosity, s is the entropy density, and
T is the temperature. This ratio characterizes the strength
of the viscous force relative to the fluid’s inertia and,
consequently, determines the effect of � on the flow [4].
We argue that viscous diffusion broadens the rapidity
dependence of transverse momentum correlations and
then show how these correlations can be extracted from
measurements of event-by-event pt fluctuations.

A number of experiments have studied transverse mo-
mentum fluctuations at CERN Super Proton Synchrotron
and RHIC [6,7]. Interestingly, the STAR Collaboration
reports a 60% increase of the relative rapidity width for
pt fluctuations when centrality is increased [8]. While the
STAR analysis differs from the one we propose, model
assumptions provide a tantalizing hint that the viscosity is
small.

Any experimental information on the kinematic viscos-
ity of high energy density matter is vital for understanding
the strongly interacting quark-gluon plasma. Theorists had
long anticipated a large collisional viscosity based on
weak-coupling QCD [9] and hadronic computations [10],
with values of �=s roughly of order unity for both phases
near the crossover temperature �170 MeV. Super-
symmetic Yang-Mills calculations give the significantly
smaller ratio �=s � 1=4� in the strong coupling limit
[11]. Lattice QCD calculations of the shear viscosity will
eventually settle the question of the size of the viscosity
near equilibrium [12]. However, the effective viscosity in
the nonequilibrium ion-collision system may differ from
these calculations. In particular, plasma-instability contri-
butions can also explain the small viscosities in nuclear
collisions [13].

We begin by formulating a simple model to illustrate
how shear viscosity attenuates correlations due to fluctua-
tions of the radial flow. Next, we show how transverse
momentum fluctuations can be used to measure these
correlations. We then demonstrate the impact of viscosity
on the rapidity distribution of fluctuations. Finally, we
explore the implications of current fluctuation data.

Before wading into the quark-gluon liquid, it is useful to
recall how shear viscosity affects the flow of more common
fluids. In a classic example of shear flow, a liquid is trapped
between two parallel plates in the xy plane, while one plate
moves at constant speed in the x direction. The fluid is
pulled along with the plate, so that vx varies with the
normal distance z. In this case,

 Tzx � ��@vx=@z (2)

is the viscous contribution to the stress energy tensor.
Central nuclear collisions produce a high energy density

fluid that flows outward with an average radial velocity vr.
In the hydrodynamic description of these collisions, we
typically assume that vr varies smoothly with spacetime
�t;x� and is the same for all collisions of a fixed impact
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parameter. For central collisions, vr is cylindrically sym-
metric. More realistically, small deviations u�x� of the
radial flow occur throughout the fluid, varying with each
ion-collision event. Such deviations occur, e.g., because
the number and location of nucleon-nucleon subcollisions
vary in each event.

Viscous friction arises as neighboring fluid elements
flow past each other. This friction reduces u, driving the
velocity toward the local average vr. The final size of the
velocity increment u depends on the magnitude of the
viscosity and the lifetime of the fluid.

In order to illustrate how the damping of radial flow
fluctuations depends on the viscosity of the fluid, we
introduce a velocity increment in the radial direction u
that depends only on the longitudinal coordinate z and t.
Our aim is to determine the linear response of the fluid to
this perturbation. For simplicity, we take the unperturbed
flow as slowly varying and work in a comoving frame
where vr locally vanishes. As in (2), the flow of neighbor-
ing fluid elements at different radial speeds u�z� produces a
shear stress

 Tzr � ��@u=@z: (3)

This stress changes the radial momentum current of the
fluid, which is generally T0r � �2��� p�vr for energy
density �, pressure p, and � � �1� v2��1=2. The pertur-
bation u results in the change gt�x� � �T0r � ��� p�u in
the comoving frame, while energy-momentum conserva-
tion @�T�� � 0 implies @gt=@t � �@Tzr=@z.

We combine these results to obtain a diffusion equation
for the momentum current:

 @gt=@t � �r2gt (4)

to linear order, where the kinematic viscosity is given by
(1), since �� p � Ts for small net baryochemical poten-
tial � � 0. Observe that (4) applies for any fluctuation gt
for which r � gt � 0; our physically motivated radial
gt�z; t� is a specific instance of such a flow. Such shear
modes are related to sound waves (compression modes) but
diffuse rather than propagate.

Viscosity tends to reduce fluctuations by distributing the
excess momentum density gt over the collision volume.
This effect broadens the rapidity profile of fluctuations. We
write (4) in terms of the spatial rapidity y � 1=2 ln�t�
z�=�t� z� and proper time � � �t2 � z2�1=2 to find
@gt=@� � ��=�

2�@2gt=@y
2. A similar equation is used to

study net charge diffusion in Ref. [14], and we can translate
many of those results to the present context. Defining V 	
h�y� hyi�2i �

R
y2gtdy=

R
gtdy for hyi � 0, we compute

the rapidity broadening

 �V �
2�
�0

�
1�

�0

�

�
; (5)

where �V 	 V � V��0� for �0 the formation time.
To address an ensemble of more general fluctuations, we

consider the correlation function

 rg � hgt�x1�gt�x2�i � hgt�x1�ihgt�x2�i: (6)

In local equilibrium, rg has the value rg;eq. The spatial
rapidity dependence of �rg 	 rg � rg;eq is broadened by
momentum diffusion. If the rapidity width of the one-body
density follows (5), then the width of �rg in the relative
rapidity yr � y1 � y2 grows from an initial value 	o fol-
lowing

 	2 � 	2
o � 2�V��f�; (7)

where �f is the proper time at which freeze-out occurs.
This equation is entirely plausible, since diffusion spreads
the rapidity of each particle in a given pair with a variance
�V. We then take

 �rg�yr; ya� / e�y
2
r=2	2�y2

a=2�2
; (8)

where (7) gives the width in relative rapidity and the width
in average rapidity ya � �y1 � y2�=2 is �. We assume
�
 	 [14]. Observe that (7) and (8) are exact for our
diffusion model [14].

Gyulassy and Hirano surveyed computations of the ratio
of the shear viscosity to the entropy and found that both the
hadron gas and the perturbative quark-gluon plasma have
�=s� 1, if one naively extrapolates these calculations near
TC [4]. These values correspond to � � �=Ts roughly of
order 1 fm for TC � 170 MeV. On the other hand, they
argue that the entropy increase near TC reduces �=s for a
strongly interacting plasma, perhaps to the supersymmetric
Yang-Mills value �=s � 1=4�.

Motivated by these estimates, we show in Fig. 1 the
increase of 	 given by (5) and (7) as a function of �.
Calculations for two values �=�0 � 0:1 and 1 schemati-
cally exhibit the likely range of viscous broadening. For
�0 � 1 fm, these values, respectively, correspond to �=s�
1=4� and 1. We provide these calculations as benchmarks;
more realistically, � would effectively increase with �
depending on the state of the fluid.

We stress that the rapidity width depends on the viscous
diffusion coefficient integrated over the collision lifetime.
Comparing the viscous and perfect scenarios in Fig. 1, we
see that the largest contribution to this width comes from

FIG. 1. Rapidity spread vs time for momentum diffusion from
(5) and (7) for two viscosity values. The gray area marks the
range extrapolated from data in Ref. [8] using (14).
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the earliest times. Consequently, we expect measurements
of this width to yield information on the viscosity when the
evolution is dominated by partons.

Variation of the radial fluid velocity over the collision
volume induces correlations in the transverse momenta pt
of particles [15]. To describe such correlations, we divide
the inhomogeneous fluid into cells small enough to be
uniform. Particles emerging from cells of different radial
velocity vr are more likely to have different pt than parti-
cles from the same cell. The number of particles of mo-
mentum p in a cell at position x at the instant of freeze-out
is dn � f�x;p�dpdx, where dp 	 d3p=�2��3 and dx 	
d3x. We take f�x;p� to be a Boltzmann distribution corre-
sponding to a fluid velocity v�x� and a temperature T�x�
that vary with each event. A similar formulation is used in
Ref. [16] to compute nonequilibrium pt fluctuations. Here
we focus on central collisions where local equilibrium is
likely achieved.

To characterize the dynamic correlations of pt, we use
the transverse momentum covariance

 C � hNi�2

�X
i�j

ptiptj

�
� hpti

2; (9)

where i labels particles from each event and the brackets
represent the event average. The average transverse mo-
mentum is hpti 	 h

P
ptii=hNi. This covariance vanishes in

local equilibrium, where the momenta are uncorrelated and
number fluctuations satisfy Poisson statistics.

This covariance is related to the spatial correlations of
the momentum current (6) by

 C � hNi�2
Z

�rg�x1;x2�dx1dx2: (10)

To obtain this result, observe that near local equilibrium
f�x;p� � hfi � �f, where the average distribution is
hf�x;p�i and the eventwise deviation �f is necessarily
small. Then hNihpti � h

R
ptdni �

R
pthfidpdx�R

hgt�x�idx 	
R
pthfidpdx. The contribution of fluctua-

tions to the momentum current

 gt�x� �
Z
�f�x;p�ptdp (11)

vanishes on event averaging. Similarly, the unrestricted
sum is h

P
ptiptji � h

R
pt1pt2dn1dn2i � hNi

2hpti
2�R

hgt�x1�gt�x2�idx1dx2. We find

 

Z
rgdx1dx2 �

� X
all i;j

ptiptj

�
� hNi2hpti

2

� hNi2C�
�X

p2
ti

�
; (12)

the second equality follows from (9). In local equilibrium,
C 	 0 implies

R
rg;eqdx1dx2 � h

P
p2
tii. Subtracting this

term from (12) gives (10).
The correlation information probed by C differs from

that found in the multiplicity variance R � �hN2i �

hNi2 � hNi�=hNi2. As before, we write R � hNi�2�R
�rndx1dx2, where �rn � rn � rn;eq and

 rn � hn�x1�n�x2�i � hn�x1�ihn�x2�i: (13)

The density correlation function (13) carries different in-
formation than (6) because particle number is not con-
served. Density fluctuations evolve by the full
hydrodynamic equations, while gt follows diffusion.

Viscosity information can be obtained from C as follows.
For simplicity, we identify spatial and momentum space
rapidity. The broadening in rapidity of �rg depends on the
shear viscosity via (7). Equation (10) implies that the
rapidity dependence of �rg can be measured by studying
the dependence of (9) on the rapidity window in which
particles are measured. We illustrate this acceptance de-
pendence in Fig. 2 for the �=�0 values from Fig. 1 by
integrating (8) over the interval ��=2 � y1, y2 � �=2;
hNiC1 is the value for the full rapidity range. We assume
�f=�0 � 20.

The STAR analysis in Ref. [8] incorporates some of
these ideas and, intriguingly, finds a broadening in rapidity
together with a narrowing in azimuth for pt correlations in
central compared to peripheral collisions. We will use the
rapidity information to estimate the viscosity. However, the
measured quantities differ sufficiently from C that this
estimate requires significant model assumptions. We there-
fore regard the result only as a signal of our method’s
promise.

STAR employs the transverse momentum fluctuation
observable �	2

pt:n to construct a correlation function as a
function of rapidity and azimuthal angle. They find that
nearside correlations in azimuth are broadened in relative
rapidity, with a rapidity width 	 that increases from
roughly 0.45 in the most peripheral collisions to 0.75 in
central ones [8]. In our terms, hNi�	2

pt:n � h
P
i�j�pti �

hpti��ptj � hpti�i, so that �	2
pt:n=hNi � C� hpti2R. This

quantity therefore depends on both momentum current and
density correlation functions (6) and (13),

 �	2
pt:n � hNi

�1
Z
f�rg � hpti

2�rngdy1dy2: (14)

We can directly compare 	 to 	 in Fig. 1 if �rg and �rn
have the same widths. Equation (7) then implies that the

FIG. 2. Rapidity dependence of the pt covariance (9) for
�f=�0 � 20. The initial distribution has 	o � 0:5.

PRL 97, 162302 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 OCTOBER 2006

162302-3



widths in central and peripheral collisions satisfy 	2
c �

	2
p � 4����1

f;p � �
�1
f;c�. Observe that the dependence on �0

cancels. Taking the freeze-out times in central and periph-
eral collisions to be �f;c � 20 fm and �f;p � 1 fm, respec-
tively, we then find �� 0:09 fm. The value �f;p � 1 fm is
reasonable, since Ref. [8] argues that the average partici-
pant path length is about 1 fm for these peripheral colli-
sions. We use (1) to find �=s� 0:08.

This result is remarkably close to the supersymmetric
Yang-Mills value 1=4� and is consistent with some hydro-
dynamic comparisons to elliptic flow data [3]. However,
we must be cautious: If �rg and �rn have different rapidity
widths 	 and 	n, then their relation to 	 depends on the
relative strength of these contributions. The data in
Ref. [17] may indicate that 	n is roughly twice 	.
Generally, 	 is bounded by 	n and 	, since (14) implies
	2
 � 	2 � 
�	2 � 	2

n�. Although 
 is not measured, the
width cannot exceed 	n � 2	. At the maximum value
	 � 2	, our dynamic assumptions yield �=s � 0:3. To-
gether, our estimates constitute an uncertainty range for the
viscosity-to-entropy ratio 0:08<�=s < 0:3. We also in-
dicate the range of 	2

c � 	2
p implied by the STAR data in

Fig. 1 as a gray band corresponding to 	 <	< 2	.
In summary, we find that shear viscosity can broaden the

rapidity correlations of the momentum current. This broad-
ening can be observed by measuring the transverse mo-
mentum covariance (9) as a function of rapidity accep-
tance. Our rough estimate from current data �=s�
0:08–0:3 is small compared to perturbative computations
[4]. To reduce the experimental uncertainty, we suggest
measuring C to allow more direct access to the momentum
density correlation function. That said, we stress that there
is additional theoretical uncertainty in this estimate, mainly
due to our freeze-out model. In practice, 	2

c � 	2
p �

4���1
f;p, since �f;p � �f;c. The freeze-out time in periph-

eral collisions �f;p is not plausibly smaller than our value
1 fm (the nucleon radius) but may be twice as large. This
would double the upper limit of our uncertainty band. That
added uncertainty can eventually be reduced by measuring
�f;p as in Ref. [18]. Identical particle and resonance effects
omitted here may contribute only at the 10% and 15%
levels, respectively [7]. Minijets, color glass, and other
particle production effects modify 	o in (7). We assume
that any modification cancels in studying the centrality
dependence at fixed beam energy. Additionally, our line-
arized diffusion model of flow fluctuations is physically
reasonable but highly idealized. A more general hydro-
dynamic description will be necessary to confront the
measurements we suggest.

How can we reduce the theoretical uncertainty? The
viscosity of a common fluid can be measured by applying

a known pressure and observing the resulting flow in a
fixed geometry, e.g., a pipe. Alternatively, one can study
the attenuation of high frequency sound waves from a
calibrated source. Efforts to compare flow measurements
to viscous hydrodynamic calculations are analogous to the
first method [3]. Our observable C is in the spirit of ultra-
sonic attenuation. The early dynamics produces a spectrum
of fluctuations analogous to sound waves that are attenu-
ated by viscosity. We suggest that experimenters pursue
both approaches, since the initial conditions and model
parameters are all unknown.
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