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We report the first observation of a near-threshold enhancement in the D0 �D0�0 system from B!
D0 �D0�0K decays using a 414 fb�1 data sample collected at the ��4S� resonance. The enhancement peaks
at a mass M � 3875:2� 0:7�0:3

�1:6 � 0:8 MeV=c2 and the branching fraction for events in the peak is
B�B! D0 �D0�0K� � �1:22� 0:31�0:23

�0:30� � 10�4. The data were collected with the Belle detector at the
KEKB energy-asymmetric e�e� collider.

DOI: 10.1103/PhysRevLett.97.162002 PACS numbers: 14.40.Gx, 12.39.Mk, 13.25.Hw

Belle recently discovered [1] a new state, the X�3872�,
with a mass of �3872:0� 0:6� 0:5� MeV=c2 and width
less than 2:3 MeV=c2 in the J= ���� system from
B� ! J= ����K� decays. Other experiments con-
firmed the existence of the X�3872� [2], but all published
results are in the J= ���� mode only. Although the
initial expectations were that the X�3872� was one of the
unobserved charmonium states, subsequent experimental
observations disfavor this hypothesis [3].

Since the properties of the X�3872� are not consistent
with a charmonium assignment, there have been specula-
tions that it is some type of exotic state, for example, a q �qg
hybrid [4]. The X�3872�mass is within errors of theD0 �D�0

threshold �3871:2� 0:8 MeV=c2�, which triggered specu-
lation that it might be a D0 �D�0 bound state (deuson) [5]. If
the X�3872� is a loosely bound S-wave molecule composed
ofD0 �D�0 charm mesons, it is expected that there will be an
enhancement in the near-threshold D0 �D�0 invariant mass
distribution [5,6]. The Belle collaboration found no evi-
dence for D0 �D0, D�D� and D0 �D0�0 decays of X�3872�
with a smaller sample of B �B events [7]. The distributions
of daughter particle momenta for D0 �D0�0 decays of a
D0 �D�0 molecule are expected to be different from those
of an incoherent sum of the decays of free D�0 and �D0 [8].

In this Letter, the D0 �D0�0 system is studied in B� !
D0 �D0�0K� and B0 ! D0 �D0�0K0

S decays. Inclusion of
charge conjugate modes is implied throughout this Letter.

These results are based on a 414 fb�1 data sample corre-
sponding to 447� 106 B �B pair events collected with the
Belle detector [9] at the energy-asymmetric e�e� collider
KEKB [10]. The fractions of neutral and charged Bmesons
produced in the ��4S� peak are assumed to be equal.

The Belle detector is a general purpose magnetic spec-
trometer with a 1.5 T magnetic field provided by a super-

conducting solenoid. Momenta of charged particles are
measured using a silicon vertex detector and a 50-layer
central drift chamber (CDC). Photons are detected in an
electromagnetic calorimeter (ECL) consisting of 8736
CsI(Tl) crystals. Particle identification likelihoods, L�=K,
are derived from the information provided by an array of
128 time-of-flight counters, an array of 1188 silica aerogel
Čerenkov threshold counters and dE=dx measurements in
the CDC.

Kaon candidates are selected from well-measured tracks
by using a requirement on the likelihood ratio, LK=�LK �
L��, which has an average kaon identification efficiency
	97% with a pion misidentification rate of 	18%.
Similarly, charged pions are selected with an efficiency
of 	98% and kaon misidentification rate of 	12%. All
tracks compatible with the electron hypothesis (	0:2%
misidentification rates from pion/kaon) are eliminated.

Neutral pions (�0) are reconstructed from pairs of iso-
lated ECL clusters (photons) with invariant mass in the
range 119 MeV=c2 <M�� < 150 MeV=c2�	� 3��. The
energy of each photon is required to be greater than
30 MeV in the barrel region, defined as 32
 < �� <
128
, and greater than 50 MeV in the endcap regions,
defined as 17
 < �� � 32
 or 128
 < �� � 150
, where
�� denotes the polar angle of the photon. A mass-
constrained fit is applied to obtain the four-momentum of
a �0 candidate.

Neutral kaons (K0
S) are reconstructed via the K0

S !

���� decay mode. There is no particle identifica-
tion requirement for daughter pions and the requirement
jM�� �MK0

S
j< 11 MeV=c2 (	3:5�, where � is the

���� invariant mass resolution) is applied. Selection
criteria to reduce random combinations of two tracks are
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described in detail elsewhere [11]. A mass-vertex-
constrained fit is performed to the K0

S candidate to improve
the resolution on its momentum measurement.

Beam-gas events are rejected using the requirements
jPzj< 2 GeV=c and 1:0<Evis=Ebeam < 2:5, where Pz,
Ebeam and Evis are the longitudinal momentum sum,
beam energy and total visible energy, respectively, in the
center of mass (c.m.) frame. Continuum events (e�e� !
q �q, where q � u, d, s, c) are suppressed by requirements
on the ratio of the second to the zeroth Fox-Wolfram mo-
ments [12], R2 < 0:50.

Candidate D0 mesons are reconstructed from well-
measured charged tracks in the K���, K�������,
K0
S�
���, and K�K� decay modes. A �3 sigma mass

window is applied for selecting D0’s, where sigma is the
decay-mode-dependent resolution of the reconstructed D0

mass (typically 	4:5 MeV=c2). Mass and vertex-
constrained fits are applied to improve the D0 meson
momentum resolution.

AD0 �D0 candidate pair is combined with a�0 and a kaon
to reconstruct a B candidate. Continuum events are further
suppressed with the criterion, j cos�Thrustj< 0:9, where
�Thrust is the angle between the thrust axis of the B candi-
dates and the thrust axis of the remaining tracks and
isolated ECL clusters. The beam-energy-constrained mass,
Mbc (�

���������������������������������������
�Ebeam�

2 � �
P
i
~Pi�2

q
), where ~Pi is the momentum

of the ith daughter of the candidate B in the c.m. frame is
restricted between 5.273 and 5:286 GeV=c2. A peak in the
difference between the measured energy of the B candidate
and the beam energy, �E��

P
iEi � Ebeam� is a signature

of B-meson signal events, where Ei is the c.m. energy of
the ith daughter of the candidate B.

The B! D0 �D0�0K signal Monte Carlo (MC) sample is
generated in two steps, B! X�3872�K followed by
X�3872� ! D0 �D0�0 assuming a phase space distribu-
tion in both decay chains. The average number of
D0 �D0�0K entries per MC signal event is 	3:55, which
are mainly due to multiple slow �0’s. The characteristics
of incorrectly reconstructed �0 candidates are identical
to signal �0’s. To reduce this multiplicity we use the
selection criterion, MD0�0 < 2:013 GeV=c2 or M �D0�0 <
2:013 GeV=c2. This requirement reduces background
and the candidate multiplicity to 1.68 with almost no
loss of signal efficiency. Possible bias due to this selec-
tion criterion is studied in the following event samples:
(i) a large sample of generic B �B and continuum MC
events; (ii) D0D��0K data; (iii) D0D0�0K (same-flavor
charm) data; (iv) the D0-mass side-band data (one
D0-meson is reconstructed when the invariant mass of
daughters is outside the D0-mass signal region); and
(v) �E side-band data (60 MeV< j�Ej< 110 MeV).
No peaking behavior is observed in the DD�0 mass dis-
tribution for any of the above-mentioned control samples,
thereby confirming that there is no bias in the selection
criteria on MD0 �D0�0 .

A unique D0 �D0�0K candidate is chosen out of possible
multiple candidates in a given event by taking the combi-

nation with the minimum value of �
�M�0

�M
�0
�2 � �

�MD0

�M
D0
�2 �

�
�M �D0

�M �D0

�2, where �x and�x are the deviation of the measured

quantity x from its nominal value and the uncertainty in its
measurement, respectively. Multiple kaon entries are re-
solved by choosing the candidate with the highest kaon
identification probability for charged kaon and minimum
jM�� �MK0

S
j for neutral kaon. There is a negligibly small

number of events with charged and neutral kaon multiple
entries.

An unbinned extended maximum likelihood fit to the
D0 �D0�0 invariant mass, MD0 �D0�0 , and �E distributions is
used to obtain the signal yield. The fit includes three
components: (i) a signal function, which is modeled by
the sum of two Gaussian functions with the same mean
value for �E and single Gaussian function for MD0 �D0�0 ;
(ii) a nonresonant B! D0 �D�0K signal, where �E is also
modeled by a double Gaussian function and MD0 �D0�0 with
a threshold function; and (iii) the remaining backgrounds,
which are modeled with a first-order polynomial for �E
and another threshold function for MD0 �D0�0 , this threshold
function is obtained from the �E side-band data of B!
D0 �D0�0K events. Shapes of the �E distributions for signal
and nonresonant B! D0 �D�0K background are fixed from
the B! D0 �D�0K data sample. The signal has a narrow
Gaussian component with width �	 4:5 MeV and a wide
Gaussian component with width 4.6 times larger that ac-
counts for 40% of the signal.

Parameters of the MD0 �D0�0 threshold functions are fixed
from a large MC sample of B! D0 �D�0K events for the
nonresonant components and B! D0 �D0�0K �E side-
band data for remaining backgrounds. The normalization
factor for the nonresonant component is fixed according to
the branching fraction from [13]. The slope of the back-
ground polynomial, the parameters of MD0 �D0�0 threshold
peak, and the normalization factors of signal and combi-
natorial background component are free parameters of the
fit.

Figure 1(a) shows the scatter plot of �E and MD0 �D0�0

in data. There is a cluster of events in the D0 �D0�0 thresh-
old region. The �E distributions for different MD0 �D0�0

intervals are shown in plots (b)–(m), where a one-
dimensional fit gives a signal of (23:4� 5:6) events in
the MD0 �D0�0 range from 3:870 GeV=c2 to 3:878 GeV=c2.
The statistical significance of this signal, defined as�����������������������������������
�2 ln�L0=Lmax�

p
, where L0�max� is the likelihood without

(with) the signal contribution, is 6:4�. A similar analysis
that uses the Mbc distribution rather than the �E distribu-
tion to measure the signal also shows a clear peak for the
same MD0 �D0�0 interval, with a consistent signal yield and
similar statistical significance.

To obtain the exact position of the near-threshold peak
as well as its branching fraction, the two-dimensional dis-
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tribution of �E and Q value (� MD0 �D0�0 � 2MD0 �M�0 )
is fitted. Projections onto Q value (for j�Ej< 25 MeV)
and �E (for 6 MeV=c2 <Q value <14 MeV=c2) are
shown in Fig. 2 along with the results of the fit. The fitted
mean and width of the near-threshold peak are 11:21�
0:68 and 2:42� 0:55 MeV=c2, respectively, in the Q
value. The signal yield is 24:1� 6:1 and the significance,
including the effects of systematic errors, is 6:4�.
Individual results for the charged and neutral B meson
samples are given in Table I together with the combined
result.

In terms of the invariant mass of D0 �D0�0 system, the
peak position is MD0 �D0�0 � 3875:4� 0:7 MeV, where the
error is statistical only.

The MC-determined signal efficiency for the near-
threshold peak is �1:87� 0:05�%. The contribution from
nonresonant B! D0 �D�0K events in the near-threshold
MD0 �D0�0 region, calculated from a large sample (	60 times
real data) is found to be 1:6� 0:2 events.

Because of the limited available phase space, the
MD0�0=M �D0�0 distributions near the threshold show some
clustering around D�0 mass. Thus, it is not possible to

separate the contributions of D0 �D�0 and D0 �D0�0 to the
peak.

With a large sample of MC-simulated D0 �D0�0 events
generated in a narrow, near-threshold mass peak, it is found
that the reconstructed peak in the MD0 �D0�0 distribution has
a high-mass tail that is caused by poorly reconstructed
�0’s. We are unable to distinguish this high-mass tail
component in the data or in samples of MC signal plus
background with sizes similar to the data. This tail, if it
exists, would produce a positive bias on the peak mass
measurement. We account for this possibility with asym-
metric systematic errors on the peak mass and efficiency of
�0:0
�1:7 MeV=c2 and �25:9

�4:8 %, respectively. Including all sys-
tematics, the observed MD0 �D0�0 peak position is 3875:2�
0:7�0:3
�1:6 � 0:8 MeV=c2, where the second error is mainly

due to the calibration uncertainty of the �0 energy and the
effects of a possible high-mass tail as discussed above. The
third error is due to the uncertainty in the world-averageD0

mass [14].
The systematic uncertainty on the B! D0 �D0�0K

branching fraction for the near-threshold peak is obtained
from the quadratic sum of the uncertainties due to
(a) limited MC statistics (1.3%), (b) subtraction of the B!
D0 �D�0K contribution (5.1%), (c) number of B �B events
(NB �B) (1.3%), (d) PDG branching fraction of D0 and K0

S
(5.0%), (e) track finding efficiencies (9.5%), (f) K=� iden-
tification uncertainties (7.0%), estimated using D�� !
�D0�! K������ events, (g) �0 detection efficiency

(7.0%), estimated from a comparison of D0 ! K����0

yields in data and MC events, (h) K0
S selection efficiency,

estimated from a comparison of D0 ! K0
S�
��� yields in

data and MC events (2.1%), (i) the ratio of D0-mass win-
dow in data and MC events (2.0%), ( j) signal efficiency,
calculated from the difference in �E and MD0 �D0�0 fits
(5.8%), (k) efficiency due to poorly reconstructed �0

( �4:8
�25:9 %), and (l) mass and spin (1.0%). Asymmetric errors

are combined according to model-1 of Ref. [15]. The total
uncertainty is estimated to be �18:9

�28:2 %.
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25 MeV) and (b) �E in the signal region of Q value
(6 MeV=c2 <Q value <14 MeV=c2). The dots are data points,
the hatched histogram corresponds to combinatorial background;
the dashed line indicates the total background and the solid line
is from the combined fitting function.
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mass bins for a possible B! D0 �D0�0K signal in data.
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In summary, a near-threshold D0 �D0�0 invariant
mass enhancement is observed at 3875:2� 0:7�0:3

�1:6 �
0:8 MeV=c2 in B! D0 �D0�0K decays. The significance
of this enhancement is 6:4�.

The observed D0 �D0�0 mass is 2:0� higher than the
world-average value of the X�3872� mass of 3871:2�
0:5 MeV=c2 while the branching fraction of this threshold
peak is 8:8�3:1

�3:6 times larger than B�B� ! X�3872�K���
B�X�3872� ! J= ����� [14]. Reference [16] ruled out
all possible quantum states of X�3872� except JPC � 1��

and 2�� while CDF finds that possible quantum num-
ber assignments are 1�� and 2�� [17]. If this near-
threshold enhancement is due to the X�3872�, the JPC �
1�� quantum number assignment for the X�3872� is fa-
vored, because the near-threshold decay X�3872� !
D0 �D�0=D0 �D0�0 is expected to be strongly suppressed
for J � 2.
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�0:30

B� ! D0 �D0�0K� 3:62� 0:14 17:4� 5:2 5.0 1:02� 0:31�0:21
�0:29

B0 ! D0 �D0�0K0 0:84� 0:04 6:5� 2:6 4.6 1:66� 0:70�0:32
�0:37
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