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We calculate analytically the probability of large deviations from its mean of the largest (smallest)
eigenvalue of random matrices belonging to the Gaussian orthogonal, unitary, and symplectic ensembles.
In particular, we show that the probability that all the eigenvalues of an (N � N) random matrix are
positive (negative) decreases for large N as � exp�����0�N2� where the parameter � characterizes the
ensemble and the exponent ��0� � �ln3�=4 � 0:274 653 . . . is universal. We also calculate exactly the
average density of states in matrices whose eigenvalues are restricted to be larger than a fixed number � ,
thus generalizing the celebrated Wigner semicircle law. The density of states generically exhibits an
inverse square-root singularity at � .
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Studies of the statistics of the eigenvalues of random ma-
trices have a long history going back to the seminal work of
Wigner [1]. Since then, random matrices have found ap-
plications in multiple fields including nuclear physics,
quantum chaos, disordered systems, string theory, and
number theory [2]. Three classes of matrices with Gauss-
ian entries have played important roles [2]: (N�N) real
symmetric [Gaussian orthogonal ensemble (GOE)], (N �
N) complex Hermitian [Gaussian unitary ensemble
(GUE)], and (2N � 2N) self-dual Hermitian matrices
[Gaussian symplectic ensemble (GSE)]. A central result
in the theory of random matrices is the celebrated Wigner
semicircle law. It states that for large N and on an average,
the N eigenvalues (suitably scaled) lie within a finite inter-
val [�
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p

,
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p

], often referred to as the Wigner ‘‘sea.’’
Within this sea, the average density of states has a semi-
circular form (see Fig. 1) that vanishes at the two edges
�
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Thus, the average of the maximum (minimum) eigen-
value is
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(�
�������
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p

). However, for finite but large N,
the maximum eigenvalue fluctuates, around its mean
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p

,
from one sample to another. Relatively recently Tracy
and Widom [3] proved that these fluctuations typically oc-
cur over a narrow scale of �O�N�1=6� around the upper
edge

�������
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p

of the Wigner sea (see Fig. 1). More pre-
cisely, they showed [3] that asymptotically for large N,
the scaling variable ��

���
2
p
N1=6��max�

�������
2N
p

� has a limit-
ing N-independent probability distribution, Prob��	x��
F��x� whose form depends on the value of the parameter
� � 1, 2, and 4 characterizing, respectively, the GOE,
GUE, and GSE. The function F��x�, computed as a solu-
tion of a nonlinear differential equation [3], approaches to
1 as x! 1 and decays rapidly to zero as x! �1. For

example, for � � 2, F2�x� has the following tails [3],

 

F2�x� ! 1�O�exp��4x3=2=3�� as x! 1

! exp��jxj3=12� as x! �1:
(2)

The probability density function dF�=dx thus has highly
asymmetric tails. The distribution of the minimum eigen-
value simply follows from the fact that Prob ��min 
 �� �
Prob ��max 	 ���. Amazingly, the Tracy-Widom distribu-
tion has since emerged in a number of seemingly unrelated
problems such as the longest increasing subsequence prob-
lem [4], directed polymers in (1� 1) dimensions [5],
various (1� 1)-dimensional growth models [6], and also
in a class of sequence alignment problems [7]. Recently, it
has been shown that the statistics of the largest eigenvalue
is also of importance in population growth of organisms in
fluctuating environments [8] and also in finance [9].

The Tracy-Widom distribution describes the probability
of typical and small fluctuations of �max over a very narrow
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FIG. 1. The dashed line shows the semicircular form of the
average density of states. The largest eigenvalue is centered
around its mean

�������
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p

and fluctuates over a scale of width
N�1=6. The probability of fluctuations on this scale is described
by the Tracy-Widom distribution (shown schematically).
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region of width �O�N�1=6� around the mean h�maxi ��������
2N
p

. A natural question is how to describe the probability
of atypical and large fluctuations of �max around its mean,
say, over a wider region of width�O�N1=2�? For example,
what is the probability that all the eigenvalues of a random
matrix are negative (or equivalently all are positive)? This
is the same as the probability that �max 	 0 (or equiva-
lently �min 
 0). Since h�maxi �

�������
2N
p

, this requires the
computation of the probability of an extremely rare event
characterizing a large deviation of��O�N1=2� to the left
of the mean. This question recently came up in the context
of random landscape models in anthropic principle based
string theory [10,11] as well as in quantum cosmology
[12]. Here one is interested in the statistical properties of
vacua associated with a random multifield potential, e.g.,
how many minima are there in a random string landscape?
Similar questions also arise in disordered systems where
one is interested in counting the number of local minima of
a random Gaussian field [13]. In order to have a local
minimum of the random landscape one needs to ensure
that the eigenvalues of the associated random Hessian
matrix are all positive. A related important question is if
one conditions all of the eigenvalues to be positive, how
does the average density of states get modified from the
Wigner semicircle form? In this Letter, we address these
issues analytically.

It is useful to summarize our main results. In Ref. [11], it
was shown numerically that the probability that all the
eigenvalues of a (N � N) GOE matrix (� � 1) are positive
(or equivalently all the eigenvalues are negative, i.e.,
�max 	 0) decreases rapidly with large N as Prob ��max 	
0� � exp����0�N2�. A crude approximate argument was
provided for the exponent ��0� � 1=4 [11], along with
numerical simulations. Here we show exactly that for all
ensembles characterized by the parameter �,

 ��0� � �
ln3

4
� �0:274653 . . .��: (3)

More generally we calculate the exact large deviation
function associated with large fluctuations of ��
O�N1=2� of �max to the left of its mean value

�������
2N
p

. We
show that for large N and for all ensembles

 Prob ��max 	 t; N� � exp
�
��N2�

� �������
2N
p

� t����
N
p

��
; (4)

where t�O�N1=2� 	
�������
2N
p

is located deep inside the
Wigner sea. The large deviation function ��y� is zero for
y 	 0, but is nontrivial for y > 0 which we compute ex-
actly. For small deviations to the left of the mean, taking
the y! 0 limit of ��y�, we recover the left tail of the
Tracy-Widom distribution as in Eq. (2). Thus our result for
large deviations of ��O�N1=2� to the left of the mean is
complementary to the Tracy-Widom result for small fluc-
tuations of ��O�N�1=6� and the two solutions match
smoothly. In the process, we also calculate exactly the
modified average density of states when all the eigenvalues

are constrained to be on the right of a barrier, say, at � � � ,
thus generalizing Wigner’s semicircle law.

Our starting point is the celebrated result due to Wigner
for the joint probability density function (PDF) of the
eigenvalues of a random (N � N) matrix [2]

 P�f�ig��BN exp
�
�
�
2

�XN
i�1

�2
i �

X
i�j

ln�j�i��jj�
��
; (5)

where BN normalizes the PDF and � � 1, 2, and 4 corre-
spond, respectively, to the GOE, GUE, and GSE. The joint
law allows one to interpret the eigenvalues as the positions
of charged particles, repelling each other via a 2D
Coulomb potential (logarithmic); they are confined on a
1D line and each is subject to an external harmonic poten-
tial. The parameter � that characterizes the type of en-
semble can be interpreted as the inverse temperature. The
average density of states �sc��;N� �

PN
i�1h���� �i�i=N

can be calculated [2] from the joint PDF in Eq. (5) and has
the Wigner semicircular form of Eq. (1). In the Coulomb
gas language, this is the average equilibrium charge
density.

Here we are interested in the probability QN��� that all
the eigenvalues are bigger than, say, � , i.e., the probability
that all charges lie to the right of the barrier at � . Note that,
due to the �! �� symmetry of the PDF in Eq. (5), this is
also the probability that all eigenvalues are less than �� ,
i.e., the probability that �max 	 �� . Let us first define the
restricted partition function

 ZN����
Z 1
�i>�

YN
i�1

d�iexp
�
�
�
2

�XN
i�1

�2
i �

X
i�j

ln�j�i��jj�
��
:

(6)

It then follows that

 QN��� �
ZN���
ZN��1�

: (7)

Let �N��� �
PN
i�1 ���� �i�=N denote the spatial den-

sity of charges. Using standard techniques of functional
integration we may express Zn��� as [14]
 

ZN��� /
Z

D��N� exp
�
�
�N
2

Z 1
�
d��N����2

�
�N2

2

Z 1
�
d�d�0�N����N��

0� ln�j�� �0j�

� N
Z 1
�
d��N��� ln��N����

�
; (8)

where the first two terms represent the energy of the
charges as in Eq. (6). The third term represents the entropy
which has a mean field form due to the fact that all charges
interact with each other via the long-range logarithmic po-
tential. The charge density �N��� evidently satisfies the
constraints: �N��� � 0 for � < � and

R
1
� d��N��� � 1.

Since we are interested in fluctuations of�O�N1=2�, it is
convenient to work with the rescaled variables, � � 	

����
N
p

and � � z
����
N
p

. It is reasonable to assume that the charge
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density scales as �N��� � N�1=2f��N�1=2�. The scaling
function evidently satisfies the constraints:

 

Z 1
z
d	f�	� � 1; f�	� � 0 for 	< z: (9)

Expressing the action in Eq. (8) in terms of rescaled
charged density f�	�, one finds that the energy term scales
as �O�N2�, whereas the entropy term �O�N� is subdo-
minant for large N. For large N, the functional integration
can be carried out using the method of steepest descent.
This gives, as a function of rescaled variable z � �=

����
N
p

,

 ZN�z� / exp��N2S�z� �O�N��; (10)

where S�z� � maxff��f�g and

 ��f� � �
1

2

Z 1
z
d	f�	�	2 �

1

2

�
Z 1
z

Z 1
z
d	d	0f�	�f�	0� ln�j	�	0j�: (11)

The stationarity condition ���f�=�f � 0 gives

 

	2

2
� C �

Z 1
z
d	0f�	0� ln�j	�	0j�; (12)

where C is a Lagrange multiplier enforcing the normaliza-
tion of f in Eq. (9). Differentiating Eq. (12) with respect to
	 gives

 	 � P
Z 1
z
d	0f�	0�

1

	�	0
; (13)

where P indicates the Cauchy principle part. It is conve-
nient to introduce a shift 	 � z� x where x 
 0 repre-
sents the distance from the barrier (to the right) at z. In
terms of the variable x, Eq. (13) becomes an integral
equation for the charge density

 x� z � P
Z 1

0
dx0f�x0�

1

x� x0
; (14)

where the right-hand side represents a semi-infinite Hilbert
transform. The real technical challenge is to invert this
integral equation and obtain a closed form expression for
the rescaled charge density f�x�. Fortunately this can be
done [14]. We find that f�x� is nonzero inside a finite box
x 2 �0; L�z�� and vanishes outside this box. For 0 	 x 	
L�z�, the density is given exactly by

 f�x� �
1

2�
���
x
p

������������������
L�z� � x

p
�L�z� � 2x� 2z�: (15)

The length of the box L�z� can be determined from the
normalization condition in Eq. (9) and is given by

 L�z� � 2
3 �

��������������
z2 � 6

p
� z�: (16)

Note that the charge density f�x� depends on z, i.e., the
location of the barrier. A plot of this density for several
values of z is shown in Fig. 2.

A couple of remarks are in order: (i) the charge density
f�x� must be positive for all x including x � 0. As x! 0,

f�x� diverges as x�1=2. However, in order that it remains
positive, we need to ensure that the amplitude L�z� � 2z 

0 at x � 0 in Eq. (15). This condition, using L�z� from
Eq. (16), requires z 
 �

���
2
p

. Thus the results in Eqs. (15)
and (16) are valid only for z 
 �

���
2
p

. Indeed, this is ex-
pected because exactly at z � �

���
2
p

, i.e., when the barrier
is placed at the left edge of the Wigner sea, we recover
from Eq. (15) the Wigner semicircle law. For z � �

���
2
p

,
Eq. (16) gives L � 2

���
2
p

(the support of the semicircle) and

Eq. (15) gives f�	� �
���������������
2�	2

p
=� for �

���
2
p
	 	 	

���
2
p

.
Thus, for any z <�

���
2
p

, our exact solution indicates that
the charge density remains unchanged from the Wigner
semicircular form. Physically this means that if the wall is
placed to the left of the lower edge of the Wigner sea, it has
no effect on the charge distribution. (ii) The second remark
is that the charge density f�x� changes its shape in an
interesting fashion as one changes the barrier location z
(see Fig. 2). It turns out that for any z >�

���
2
p

, the charges
always accumulate near the barrier at x � 0, leading to a
square-root divergence of f�x� � x�1=2 as x! 0. In parti-
cular, for z � 0, this accumulation of eigenvalues near x �
0 can be interpreted as the accumulation of massless modes
in the context of a (stable) field theory, a fact that may be of
relevance in anthropic principle based string theory.

Knowing f�x� exactly, the Lagrange multipler is deter-
mined by setting	 � z in Eq. (12). This gives, following a
shift in the integral, C � �z2=2�

R
1
0 dx

0f�x0� ln�x0�. The
saddle point action can now be evaluated explicitly [14]
 

S�z� � �
1

216
f72z2 � 2z4 � �30z� 2z3�

��������������
6� z2

p
� 27�3� ln�1296� � 4 ln��z�

��������������
6� z2

p
��g: (17)

The probability that all eigenvalues are to the right of � �
z
����
N
p

is then given by, to leading order in large N, using
Eqs. (7) and (10),

210
0

1

2

3

FIG. 2. The average density of states f�x� plotted as a function
of the shifted variable x for z � �1 (dotted line), z � 0 (solid
line), and z � 0:5 (dashed line).
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 QN�� � z
����
N
p
� � exp���N2��z��; (18)

where ��z� � S��
���
2
p
� � S�z� and S�z� is given by

Eq. (17). Note that we have used S��1� � S��
���
2
p
� fol-

lowing remark (i) above. The result in Eq. (4) can then be
derived by setting t � �� � �z

����
N
p

and one finds the
large deviation function for y 
 0, ��y� � S��

���
2
p
� �

S��
���
2
p
� y�. For small y, ��y� � y3=6

���
2
p

and for large
y, ��y� � y2=2. Thus for

�������
2N
p

� t
����
N
p

, using ��y� �
y3=6

���
2
p

we get

 Prob ��max 	 t; N� � exp
�
�
�
24
j
���
2
p
N1=6�t�

�������
2N
p

�j3
�

(19)

which matches exactly with the left tail of the Tracy-
Widom distribution for all �. For example, for � � 2
one can easily verify this by comparing Eqs. (2) and (19).

The probability that all eigenvalues are positive is ob-
tained by setting z � 0 in Eq. (18) resulting in a re-
markably simple and exact formula stated in Eq. (3).
The fact that this probability decreases as rapidly as
� exp�����0�N2� for largeN and that there are significant
�O�N� corrections indicate that numerically it is ex-
tremely difficult to measure the exponent ��0� accurately.
An attempt was made in Ref. [11] using GOE (� � 1)
matrices up to sizes of N � 7 to fit the probability with the
form exp��aN
� that yielded 
 � 2:00387 and a �
0:3291. Clearly, the system sizes are too small to take
this fit seriously. It turns out that instead it is easier to
evaluate QN�0� directly from Eq. (7) via a clever
Monte Carlo method that allows us to go up to N � 30
[14]. In Fig. 3 we show a plot of ln�QN�0�� measured using
this Monte Carlo method (for � � 1) with a fit of the
form aN2 � bN � c. This fit yields a � �0:2755, which
is in good agreement with the exact value of ��0� �
0:274 653 . . . predicted here.

Another numerical check consists in computing the
charge density f�	� by direct sampling of Gaussian ma-

trices and comparing it to the theoretical prediction in
Eq. (15). Here, we are clearly restricted to small values
of N. In Fig. 4, we compare the numerically computed
f�	� for z � 0 obtained from matrices of size (6� 6) with
the theoretical prediction. Despite the small value of N, the
agreement is already fairly good.

We thank O. Bohigas for useful comments.
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FIG. 3. Monte Carlo computation of ln�QN�0�� points with
error bars along with a quadratic fit (solid line).
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FIG. 4. The analytic large N formula for f with z � 0 (solid
line) in Eq. (15) is compared to the numerically generated
averaged histogram of (6� 6) Gaussian matrices with positive
eigenvalues. Despite the small size N � 6, the agreement is
already fairly good, except near the large 	 tail.
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