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Using Monte Carlo simulations and an extended Landau-Alexander-McTague theory, we demonstrate
that colloids in a one-dimensional quasicrystalline potential order in triangular and rhombic-� crystalline
phases. Increasing the strength of the potential further, a new type of light-induced melting is discovered
that has its origin in the nonperiodicity of the potential. In contrast to reentrant melting in periodic
potentials, the quasicrystalline potential melts the crystalline phases even when they already exist at zero
potential.
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Colloids are widely used as model systems of statistical
mechanics and for investigating nonequilibrium. Their
crystallization, ordering, and dynamics in external fields
are of particular interest [1]. The seminal work of Ashkin,
where he demonstrated that colloidal particles are forced
into the direction of highest laser intensity [2], inspired
new exciting studies. A charge-stabilized colloidal suspen-
sion, confined between two glass plates to form a quasi-
two-dimensional system, can be manipulated by applying
interfering light fields in order to create complex struc-
tures, also referred to as optical matter [3]. With such an
experimental setting, Chowdhury, Ackerson, and Clark
discovered that a one-dimensional periodic potential can
induce a two-dimensional triangular ordering of colloidal
particles [4]. The wave number G0 of the potential was
chosen such that it coincides with the position of the first
peak in the direct correlation function of the colloidal
system in the liquid phase. Chowdhury et al. termed this
phenomenon light-induced freezing and explained it with
the help of an extension of the Landau-Alexander-
McTague theory. In its original form, this theory was
used to discuss the stability of competing crystal structures
and their melting transitions [5]. An alternative theoretical
explanation of light-induced freezing employs density
functional theory [6]. Experiments [7] and Monte Carlo
simulations [8,9] reveal the surprising phenomenon that
the laser-induced crystal can melt again when the laser
intensities are increased further. After Bechinger et al.
stressed the importance of thermal fluctuations [7],
Radzihovsky, Frey, and Nelson presented a theory based
on dislocation unbinding that explains the observed laser-
induced freezing and reentrant melting [10], followed by a
detailed study in Ref. [11]. The theory also shows that the
one-dimensional periodic potential cannot melt the colloi-
dal crystal when it is already stable at zero potential.

In this Letter we study colloidal ordering in a one-
dimensional quasicrystalline potential that consists of in-
commensurate modulations with wave numbers G0� and
G0=�, where � � �1�

���
5
p
�=2 is the golden mean. Using

Monte Carlo simulations and a careful implementation of

the extended Landau-Alexander-McTague theory, we iden-
tify stable triangular and rhombic phases. However, we
cannot confirm the result of Das and Krishnamurthy [12],
who report a stable quasicrystalline phase with pentagonal
symmetry as indicated in Fig. 1(a). Remarkably, we dis-
cover that the nonperiodicity of the potential enables a new
mechanism for laser-induced melting. It even occurs for
crystalline phases that are already stable at zero potential.

We performed Monte Carlo simulations of a charge-
stabilized colloidal system using the Metropolis algorithm
[13,14] with 1054 particles in a box with periodic boundary
conditions. A rational approximation was used for the box
size such that a pentagonal crystal can fit into the box with
only minor distortions. The colloids interact via the pair
potential ��r� given by the Derjaguin-Landau-Verwey-
Overbeek theory [15,16]:
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FIG. 1. Reciprocal lattice vectors of four possible phases in a
laser potential modulated with the wave vectors G� � �G0ex
and G� � �1=��G0ex. In the pentagonal and triangular phase the
lengths of the lattice vectors are Gj � G0 (j � 1; . . . ; 5 or
1; . . . ; 3). In the rhombic phases G1 equals either G� or �G�;
G2 and G3 are chosen such that the colloidal density is the same
as in the triangular lattice.
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where r is the distance between two interacting colloids, R
the radius of a colloid, Z� its effective surface charge, �r
the dielectric constant of water, and � the inverse Debye
screening length. We employ the same values for the
parameters as used by Strepp, Sengupta, and Nielaba [9]:
R � 0:535 �m, Z� � 7800, �r � 78, and the temperature
T � 293:15 K. The density is chosen such that the spacing
in an ideal triangular lattice would be as � 2:53 �m. In
the simulations, the colloids are not allowed to overlap and
a large distance cutoff of the potential was used at 5as. The
laser potential is given by

 Vext�r� � �
V
2
�cos�G� � r� � cos�G� � r�	; (2)

with G� � ��G0ex, G� � ��1=���G0ex, where ex is the
unit vector in the x direction and G0 � �=�

���
3
p
as�. In an

infinite system �� � �� � � � �1�
���
5
p
�=2 is the golden

mean. To implement the periodic boundary conditions, we
use the approximations �� � 55=34 and �� � 34=21,
which are ratios of consecutive Fibonacci numbers. The
free parameters of the system are the potential strength V
and the reduced inverse screening length �as.

The results from our simulations are summarized in the
phase diagram of Fig. 2, where we plot the order parame-
ters 	�G2� � h

P0
i;j exp�iG2 � �rj � ri�	i=N. Here G2 be-

longs to either the triangular or the rhombic phases, ri, rj
are the particle locations,

P0
i;j means sum over all nearest

neighbors, and N is the total number of terms in the sum
[17]. We do not find a stable pentagonal phase. For small
potential strength V and low �as, the colloidal ordering is
triangular. For larger laser intensities, we identify a rhom-
bic phase with one of its reciprocal lattice vectors matching
the wave vector G� of the external potential [see Figs. 1(c)

and 3(a)]. We therefore call it the rhombic-� phase. Note
that it also occurs in two-dimensional colloids that are
liquid for zero potential. So laser-induced freezing is pos-
sible in our system.

Interestingly, at very large potential strengths, the crystal
phases melt into a modulated liquid phase. Even more
surprising, melting also occurs for small inverse screening
lengths; i.e., a colloidal crystal, already existing at zero
external potential, can be melted by applying a quasiperi-
odic light field. This is in stark contrast to the well-known
laser-induced reentrant melting observed for the periodic
laser potential Vext�r� � V cos�G0ex � r� [7]. These sys-
tems are strongly governed by fluctuations, and only crys-
tals produced by light-induced freezing can exhibit
reentrant melting [7,10]. On the other hand, colloidal
crystals, already stable at zero potential, will never melt
for increasing V. In each potential well of a periodic light
field, the particle density or the average particle distance is
the same so that neighboring lines of particles will always
remain locked relative to each other to form a crystal.

To understand the mechanism behind the observed melt-
ing scenario in a quasiperiodic potential, we take a closer
look at the modulated liquid phase, a snapshot of which is
presented in Fig. 3(b). All particles are located in local
minima of the quasiperiodic potential which is illustrated
in the lower part of the figure. The potential wells have an
approximate distance of as=�, and their depths are modu-
lated on the length �as. Thus the line density of the
particles differ from one well to the other. Some wells
are even empty or at least the probability for finding a
particle in such wells is very low. This creates a quasiperi-
odic ordering in the direction perpendicular to the wells.
Since the ratios of the line densities of neighboring wells
are usually irrational, a global periodic ordering along the
direction of the wells is impossible. This explains that a
strong one-dimensional quasicrystalline potential destroys
all possible periodically ordered phases and thus a new
kind of melting into a modulated liquid structure is ob-
served which is not driven by fluctuations.
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FIG. 2. The order parameters 	�G2� characterizing the crys-
talline ordering of the colloids as a function of the strength V of
the 1D quasicrystalline potential and the reduced inverse Debye
length �as. Inset: resulting phase diagram.
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FIG. 3. Snapshots of particle positions in a one-dimensional
quasicrystalline potential indicated in the lower part of each
figure. The inverse screening length �as � 14 is chosen such
that the colloidal system is solid for zero potential. For V �
10kBT (a) the rhombic-� phase occurs; for V � 1000kBT (b) the
rhombic ordering has melted into a modulated liquid.

PRL 97, 158304 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 OCTOBER 2006

158304-2



The structure and the dynamic properties of the modu-
lated liquid are very interesting especially for large screen-
ing lengths where neighboring colloidal lines are strongly
coupled to each other. In Brownian dynamic simulations
we find that the lines are able to slide past each other on
very long time scales; for more distant lines of particles,
the sliding is clearer visible. This seems to preclude any
two-dimensional solid structure. On the other hand, a pos-
sible glassy or even quasicrystalline ordering for very large
screening lengths (i.e., very small �as) has to be inves-
tigated in more detail and will be presented elsewhere [18].

Since laser-induced melting in a quasicrystalline poten-
tial is not driven by fluctuations, we apply an extended
Landau-Alexander-McTague theory, i.e., a typical mean-
field theory, to explain the phase diagram in Fig. 2 analyti-
cally. For each of the four possible phases shown in Fig. 1,
we need to calculate the free energy. Since their reciprocal
lattice vectors have different lengths and in order to be able
to distinguish between the two rhombic phases, an elastic
term has to be included in the free energy. We therefore
start with an expansion of the free energy in terms of mass
density variations, 
	�r� � 	�r� � 	0, where 	�r� is the
density field in real space and 	0 its mean value [19]. In
addition to the Alexander-McTague theory, we supplement
it by an external-field term:
 

F �
Z
dA
�
�Vext�r�
	�r� �

b0

2
�
	�r�	2

�
c1

2
�r
	�r�	2 �

c2

2
�r2
	�r�	2

�
d
6
�
	�r�	3 �

e
24
�
	�r�	4

�
: (3)

The integration is over the whole plane. The signs are
chosen such that for positive constants b0, c1, c2, d, and e
and sufficiently small b0, a phase transition to some (qua-
si)crystalline phase should occur. With the Fourier series
for the density modulation, 
	�r� �

P
j	je

�iGj�r, where
Gj denotes the relevant reciprocal lattice vectors, including
G� and G�, the free energy (3) is transformed into recip-
rocal space. The second-order term assumes the following
form:

P
j�b
0 � c1G2

j � c2G4
j �j	jj

2. The prefactor of j	jj2

prefers a certain wave number which we choose to beGj �

G0 so that a phase transition to the triangular phase occurs
at zero external potential. Introducing new constants b and
c, the second-order term is then rewritten as

P
j�b�

c�G2
j �G

2
0	

2�	2
j . The parameter b controls, as usual, the

phase transition from the liquid to the crystalline phases
and c is a typical elastic constant that distinguishes soft
(small c) from rigid (large c) crystals. Since the lengths of
the lattice vectors of the rhombic phases in Fig. 1 deviate
from G0, they are penalized by the elastic free energy
relative to the triangular crystal.

To reduce the number of the six free parameters V, b, c,
d, e, and G0, we rescale the free energy F and the order
parameters 	j appropriately and measure the wave num-
bers Gj in units of G0. Using the external potential (2) in

Eq. (3) for F , the free energy density F =A in reciprocal
space assumes the final form

 

F

A
� �V�	� � 	�� �

X
j

�b� c�G2
j � 1	2�j	jj2

�
1

6

X
j;k;l

	j	k	l
�Gj �Gk �Gl�

�
1

24

X
j;k;l;m

	j	k	l	m
�Gj �Gk �Gl �Gm�; (4)

where 
�� � �� denotes the Kronecker symbol. Note that, for
convenience, all the reduced quantities and parameters are
named the same way as the original ones.

The reduced free energy density only contains three
essential parameters. The quantity V determines the
strength of the quasiperiodic potential. The parameter b
is usually identified with the reduced temperature.
However, in experiments [7] and in our simulations (see
Fig. 2) of the two-dimensional colloid system, crystalliza-
tion is controlled by the reduced inverse Debye length �as.
So it makes sense to identify b with �as. For small V our
theory predicts crystallization for decreasing b, which
corresponds to decreasing the inverse Debye length �as
as illustrated in Fig. 2. Finally, c is an effective elastic
constant as already noted.

For each phase characterized in Fig. 1 by a set of
reciprocal lattice vectors, the free energy density (4) can
be calculated using the relations between the lattice vec-
tors, indicated in Fig. 1, to construct the third- and fourth-
order terms of F =A. Obvious fourth-order terms of the
form j	ij2j	jj2 are not included in Fig. 1. We realized that
Das and Krishnamurthy could identify a stable pentagonal
phase [12] since they did not take into account the non-
trivial fourth-order terms indicated in Fig. 1 as well as the
rhombic phases. Symmetry dictates that 	2 � 	5 and 	3 �
	4 in the pentagonal phase; i.e., the free energy depends
only on 	�, 	�, 	1, 	2, and 	3. For all other phases, 	2 �

	3, and the independent order parameters are 	�, 	�, 	1,
and 	2 for triangular ordering and 	�, 	�, and 	2 in the
rhombic phases. For a given point (V, b, c) in parameter
space, the free energies of the crystalline phases are mini-
mized with respect to the order parameters. The phase with
the lowest free energy is then identified as the stable, solid
phase if all its order parameters 	j differ from zero.
Otherwise, if only the order parameters associated with
G�, G�, and G1 are nonzero, the system’s phase is called
modulated liquid. The numerical minimization of the free
energies was performed with the help of the algebraic
program MATHEMATICA.

The final phase diagram in the three-dimensional pa-
rameter space is shown in Fig. 4(a). The dark-gray and
light-gray regions indicate, respectively, the stable trian-
gular and stable rhombic-� phases. In the rest of the
parameter space, a modulated liquid was found. So neither
a pentagonal nor a rhombic-� phase exists. In Figs. 4(b)–
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4(d), phase diagrams for three constant elastic coefficients
c are shown. Rigid triangular crystals [see Fig. 4(b)] can
only be melted with very high laser intensities. A
rhombic-� phase is strongly penalized by a large elastic
constant c and therefore does not occur. For systems of
intermediate [see Fig. 4(c)] or soft [see Fig. 4(d)] elasticity,
a rhombic-� phase does exist. Note that for small c [see
Fig. 4(d)], the triangular phase is only stable for V < 10�4

and therefore is not visible in the phase diagram. The
phenomena of light-induced freezing of the rhombic-�
phase and light-induced melting of both stable phases are
reproduced by the mean-field theory. The melting of the
triangular phase followed by laser-induced freezing into
the rhombic-� phase for increasing V [see Fig. 4(c)] could
be an artifact since we cannot resolve it in our Monte Carlo
simulations. Note that the validity of the mean-field theory
for large V or laser intensities is not obvious. For periodic
potentials, it was realized that the results at large V differ
from the outcome of density functional theory [6]. The rea-
son seems to be the truncation of the Landau expansion.
However, the phase diagrams for the quasicrystalline po-
tential calculated with Monte Carlo simulations [see Fig. 2]
and the extended Landau-Alexander-McTague theory for
sufficiently soft systems [see Fig. 4(c)] are very close. This
demonstrates the validity of the mean-field theory and the
fact that fluctuations do not determine the behavior of our
system.

Using Monte Carlo simulations and an extended
Landau-Alexander-McTague theory, we demonstrate that
colloids in a one-dimensional quasicrystalline potential
order in triangular and rhombic-� crystalline phases. In-
creasing the strength of the substrate potential further, a
new type of light-induced melting is discovered that has its
origin in the nonperiodicity of the potential. In contrast to

reentrant melting on periodic substrates, the quasicrystal-
line potential melts the crystalline phases even when they
already exist at zero potential. The resulting modulated
liquid suggests interesting structural and dynamic proper-
ties that need to be fully explored. Our results should be
observable in experiments. Given that colloids serve as
model systems for statistical mechanics, our work provides
guidance for investigating the ordering in appropriately
nanostructured systems. On an atomic scale, the 1D qua-
sicrystalline potential may be realized by atomic surfaces
of decagonal quasicrystals cut along the tenfold symmetry
axis.
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FIG. 4. (a) Phase diagram showing the regions of a stable
triangular (dark gray) and rhombic-� (light gray) phase. In all
other regions of the parameter space, only the modulated liquid
phase is stable. (b)–(d) Phase diagrams for rigid crystals with
c � 1 (b), intermediate systems with c � 10�2 (c), and soft
systems with c � 10�4 (d).
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