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Unconfined granular flows along an inclined plane are investigated experimentally. During a long tran-
sient, the flow gets confined by quasistatic banks but still spreads laterally towards a well-defined asymp-
totic state following a nontrivial process. Far enough from the banks a scaling for the depth averaged
velocity is obtained, which extends the one obtained for homogeneous steady flows. Close to jamming it
exhibits a crossover towards a nonlocal rheology. We show that the levees, commonly observed along the
sides of the deposit upon interruption of the flow, disappear for long flow durations. We demonstrate that
the morphology of the deposit builds up during the flow, in the form of an underlying static layer, which
can be deduced from surface velocity profiles, by imposing the same flow rule everywhere in the flow.
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Geophysical granular flows such as pyroclastic flows or
debris avalanches self-channelize, forming a coulee sur-
rounded by static banks, until they come to rest and form a
deposit [1,2] with levee or channel morphology. Recent
laboratory experiments [3] involving short time interrup-
tion of a localized flow of dry granular material have
reproduced such deposit morphology and underlined the
need for a deeper understanding of the rheology. Flows
down an incline provide a natural configuration for study-
ing the rheometry of dense granular media. In the case of
homogeneous flows, experiments [4] have shown that there
is a minimum thickness hstop��� below which no flow
occurs and a maximum one hstart��� above which static
layers spontaneously destabilize. Later it has been shown
[3–6] that the depth averaged velocity �u is related to the
thickness h by the flow rule:

 

�u������
gh
p � �

h
hstop���

� �; (1)

where g is the gravity, leaving unclear the dependence of
the nondimensional parameters � and � on both the kind
of grains and the covering of the incline. For a flow of glass
beads down an incline covered with glued beads, � � 0
and the flow rule is consistent with a local rheology [6,7].
This rheology has been validated in various flow configu-
rations, including nonsteady and nonuniform flows as well
as flows on erodible ground [6,8], and was recently ex-
tended to three dimensions [9]. However, it does not verify
�u�hstop� � 0 and hence does not describe the flow arrest,
where nonlocal effects are expected to become significant
[10]. Requiring this last condition imposes � � ��, a
situation actually reported in the case of unconfined flows
[3]. Hence, it is of primary importance, both for practical
and fundamental reasons, to investigate further the situ-
ation where flowing and static regions coexist.

In this Letter, we study experimentally an unconfined
flow down an incline. The flow indeed self-channelizes
within static banks which may evolve freely. Our main
goals are to characterize the rheology and dynamics of the
flow close to jamming, and its relation to the morphology
of the deposit when the flow stops.

Setup.—The experimental setup is sketched on Fig. 1(a).
A 60� 300 cm2 plane, covered with sand paper of average
roughness about 200 �m, is inclined at an angle � ranging
from 24� to 34�. The granular material consists of a
slightly polydisperse mixture of spherical glass beads of
diameter d � 350� 50 �m and density � � 2500 kg 	
m�3. Grains are released from a reservoir located at the
top of the plane by opening a gate of adjustable height and
width. To produce homogeneous flows, the whole plane
width is used, but for unconfined flows the gate width is
reduced to 5 cm and the width of the plane is always larger
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FIG. 1. (a) Sketch of the experimental setup. (b) Phase dia-
gram in the plane �h; ��: the experimental data for hstop��� (
)
and hstart��� (\circ ) with the best fits by Eq. (2) (solid line).
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than that of the avalanche. For the present setup, hstart���
and hstop��� obey [Fig. 1(b)]

 tan� � tan�1 � �tan�0 � tan�1� exp��h=�d�; (2)

with � � 3:2, �1stop � 22:5�, �1start � 23:0�, �0
stop � 33:6�,

and �0
start � 35:6�. The mass flow rate Q is measured at the

end of the plane, where the grains fall inside a reservoir
resting on a scale. During all experiments, some of which
lasted up to 5 h,Q fluctuated by less than 2%. A 572� 768
pixels camera positioned at the vertical of the plane is used
to acquire images of the flow at 25 Hz. The local flow
thickness h is measured using the deviation of a laser sheet
inclined at �5� over the layer. The measured sensitivity
(�60 �m) is smaller than the grain size thanks to the
averaging across the beam width (10 mm) along x. About
10% of the grains are dyed in black, and the velocity of the
surface grains, us, is measured using a particle-imaging
velocimetry algorithm. In all experiments the spanwise
velocity component is found to be smaller than the reso-
lution (2 mm=s).

Transverse spreading and self-channelization.—Upon
release of the grains, an avalanche front propagates down
the plane at a constant velocity, leaving behind it a stream-
wise flow uniform in the x direction [Fig. 1(a)]. Figure 2(a)
displays thickness profiles at successive time steps, after
the front has reached the downstream extremity of the
incline—typically after 100 s. It shows that the flow wid-
ens while the thickness profiles bend progressively. The
central flow thickness converges rapidly toward an asymp-
totic value H1��;Q�, whereas its width converges to an
asymptotic value W1��;Q� with a much larger relaxation
time [Fig. 2(b)]. When preparing a flow of width larger
than W1 by increasing the flow rate, and returning to the
initial flow rate, the width decreases back to W1. This
shows beyond any doubt the selection of an asymptotic
steady state. Both W1 and H1 are observed to increase
with the flow rate Q. The aspect ratio H1=W1 turns out to
be independent of Q and slightly decreases with �
[Fig. 2(c)].

Figure 2(d) shows the transverse structure of the flow: an
inner flowing region (u � 0) flanked by two static banks
(u � 0) of width approximately 5 mm. These banks form
due to a strong increase of friction on the side of the layer,
as the thickness h vanishes and thus� tends to�0 � tan�0

[Eq. (2)]. Once the banks are formed, their external sides
are so steep that the free surface angle tan� � tan2��� �
�@yh�2�1=2 becomes significantly larger than the plane
angle � [Fig. 2(e)] allowing transverse displacements.
Indeed, the banks are outside the metastable band (hstop,
hstart) during the spreading phase and converge toward it in
the asymptotic state. The flow is hence divided into a
central flow region uniform in the y direction—the ratio
of the transverse to the vertical diffusion of momentum
h2=W2 � 10�4—and the banks dominated by three-
dimensional effects. In both regions, inertial terms
uy@ux=@y � hu2

s=W2 � 10�3 g are small.

Flow rule.—The flow rule is first determined using
homogeneous steady flows covering the total width of the
plane [Fig. 3(a),4]. For h=hstop > 2 it is well described by
Eq. (1) with � � 0 and � � 0:134 assuming �u=us � 3=5
(see below). For h=hstop < 2, there is a systematic devia-
tion towards lower us=�gh�1=2 values. However, smaller
thicknesses cannot be further investigated in homogeneous
flows. On the contrary, self-channelized flows are naturally
very thin and give access precisely to that range of thick-
ness. Figure 3(a) (
) shows data collected near the center-
line of the flow, where the flow has been shown above to be
uniform in the transverse direction. Plotting us=

������
gh
p

as a
function of h=hstop, one observes again a collapse of data
(for different �, Q, and t) on a single curve which satisfies
�u�hstop� � 0 and can be described at the first order in
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FIG. 2. (a) Time evolution of the height profiles h�y; t� and
(b) evolution of the central height H and width W of the flow for
Q � 25 g 	 s�1, � � 25�. (c) Asymptotic aspect ratio of the flow
H1=W1 as a function of the slope angle, for flow ratesQ ranging
from 3 g=s (4) to 30 g=s (�). (d) Velocity us�y� (solid line) and
thickness h�y� (dashed line) profiles for � � 25�, Q � 25 g 	
s�1, and t � 150 s. (e) Thickness vs local slope � inside the
quasistatic banks for t < 2000 s (\circ ), and in the asymptotic
state (
). The solid lines show hstop and hstart.
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h=hstop by

 

�u������
gh
p � ~�

�
h

hstop���
� 1

�
; (3)

with ~� � 0:219 assuming now �u=us � 1=2 (see below).
Note that both in the confined and unconfined cases, we
have checked using dyed grains that the flow involves the
whole layer thickness. Most importantly, the data obtained
in both cases coincide on their common range of thickness
and provide, to the best of our knowledge, the first experi-
mental determination of the flow rule over the whole range
of thicknesses, independently of the flow configuration.

We now briefly discuss its relation to the locality of the
rheology. For a large enough thickness, the flow rule obeys
Eq. (1) with � � 0 and is consistent with a local rheology
[6]: when the shear stress � depends on the shear rate _� at
the considered point only, it follows from dimensional
analysis—assuming a small transverse shear stress as sug-
gested by the flatness of the transverse velocity profiles—
that the rheology can be expressed under the nondimen-
sional form �=P � �I�I� with I � _�d=�P=��1=2, where d
is the grain diameter, P the pressure, and � the density.
Integrating this last relation leads to a scaling law for the
depth averaged velocity �u�h; �� � A���h3=2, which is in-
deed satisfied by Eq. (1), when � � 0. For a small thick-
ness the flow rule Eq. (3) clearly displays a violation of the
local rheology close to jamming, which is confirmed by the
measurement of the ratio of the depth averaged velocity
�u—measured with the avalanche front velocity in the

homogeneous flow case—to the surface velocity us
[Fig. 3(b)]. For large h=hstop values, �u=us � 3=5, which
is consistent with Bagnold-like profile deriving from a
local rheology [6]. Close to jamming transition, �u=us
decreases to 1=2 in agreement with numerical findings
[5] of a transition toward a linear velocity profile. Note
that the above analysis suggests that �=hstop��� shall not
depend on the covering of the incline, whereas ~�=hstop���
and of course hstop could. Finally from conservation of
mass, one expects a linear relationship between Q and
H1W1 �u�H1� / �g1=2H5=2

1 �H1=hstop � 1�, using Eq. (3).
This relation is closely verified experimentally [Fig. 3(c)]
and suggests to describe the flow in a shallow water
approximation. However, let us mention that neither the
asymptotic state (its bended shape but also the selection of
the aspect ratio H1=W1) nor the temporal scalings ofW�t�
and H�t� can be simply predicted following such an ap-
proach. Hence we shall postpone this analysis as well as a
full three-dimensional analysis to a forthcoming paper.
Note that the complete set of shallow water equations is
solved in [11].

Banks.—In the previous section, we investigated the
flow rule near the centerline of the flow. No such scaling
is a priori expected close to the static banks. Indeed as seen
on Fig. 4(b), when acquiring data moving away from the
centerline, no scaling is observed and us=�gh�

1=2 is sys-
tematically underestimated. A possible explanation of
such a deviation from the otherwise scaling is the extension
of the static zone below the flowing grains. In order to
verify such an hypothesis, we have performed specific
experiments.

One first conducts an experimental run using white
grains. After a few minutes, the flow is stopped and a
deposit forms. The white grains of a small slice across
the deposit are removed and replaced by black grains of the
same material. The flow is then started again at the same
flow rate. At the surface, the black grains are washed out by
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25� (4) to 28� (�).
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the incoming white grains except in the static borders.
After a few minutes, the flow is interrupted again. Using
a brush, the white grains are removed very cautiously layer
after layer in the region of the slice. Close to the center, the
deposit is exclusively composed of the new white grains,
proving that the flow involves the whole thickness.
However, close to the banks, a layer of black grains re-
mained trapped, indicating the presence of a static [12]
layer of thickness Z�y; t� [denoted by \circ in Fig. 4(a)]
below the flowing one. The interface between black and
white grains turns out to be very sharp (of the order of a
single grain diameter). Using us, one can construct the
thickness R � h, which would flow if the flow rule ob-
tained above were applicable inside the flowing layer. The
reconstructed static-flowing interface Z � h� R is shown
in Fig. 4(a) together with the measured one. The fairly
good agreement suggests that, to the first order, mobile
grains flow above static grains just like they flow above the
rough plane. At the same order, it tells us that the flow rule
is actually observed everywhere in the flow when applied
to the flowing thickness R instead of the total one h.

Levees.—Turn now to the morphology of the deposit
which forms when the flow stops. It has been reported [3]
that, under certain conditions of inclination and flow rate,
the deposit formed upon interruption of the flow exhibits a
levee or channel morphology similar to those observed on
pyroclastic flow deposits. In the present study, we have
observed that for larger times, the flow actually keeps on
widening and converges only very slowly toward its
asymptotic state. Accordingly the shape of the deposit
strongly depends on the flow duration t [Fig. 5(a)]. For
small t, deposits are composed of a central flat zone of
thickness hstop bordered by two levees of thickness larger

than hstop [Fig. 5(c)] as previously reported [3]. When t
increases, the levee thickness decreases until it vanishes at
very long time, so that the deposit corresponding to the
asymptotic state is indeed flat. Levees result from the
combination between lateral static zones on each border
of the flow and the drainage of the central part of the flow
after the supply stops [3]. However, a clear picture is still
lacking concerning the junction between a central flat zone
of thickness hstop and a levee of thickness larger than hstop.
The flow rule that was obtained here provides a very simple
scenario. The flow stops when R � hstop, and one expects
the deposit to form by superimposing a layer of thickness
hstop to the static layer. Accordingly the deposit thickness
should be hdep � Z� hstop wherever us � 0 and hdep � Z
in the quasistatic banks, where us � 0. Figure 5(b) pro-
vides the experimental evidence that such a simple sce-
nario indeed holds: the predicted and the measured deposit
profiles qualitatively match.

To conclude, by investigating unconfined granular flows
down an incline, we have shown that they obey a flow rule
which reveals a crossover towards a nonlocal rheology
close to the jamming transition. This flow rule accounts
for the morphology of the deposit, which actually builds up
during the flow, in the form of an underlying static layer.
This underlines the importance of addressing erosion-
deposition mechanisms issues to complete a full descrip-
tion of geophysical flows.
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FIG. 5. (a) Thickness profiles of the deposit hdep�y� obtained
after different flow durations for Q � 25 g 	 s�1, � � 26�.
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(dotted line) deposit profiles. (c) Picture of levees observed at the
borders of a deposit.
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