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Magnetic metamaterials composed of split-ring resonators or U-type elements may exhibit discreteness
effects in THz and optical frequencies due to weak coupling. We consider a model one-dimensional
metamaterial formed by a discrete array of nonlinear split-ring resonators where each ring interacts with
its nearest neighbors. On-site nonlinearity and weak coupling among the individual array elements result
in the appearance of discrete breather excitations or intrinsic localized modes, both in the energy-
conserved and the dissipative system. We analyze discrete single and multibreather excitations, as well as
a special breather configuration forming a magnetization domain wall and investigate their mobility and
the magnetic properties their presence induces in the system.
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Artificial nonmagnetic materials exhibiting magnetic
properties in the Terahertz and optical frequencies have
been recently predicted theoretically [1,2] and demon-
strated experimentally [3—5]. The key element for most
of these magnetic metamaterials (MMs) is either the split-
ring resonator (SRR) or its U-shaped modification [6]. The
realization of MMs at such (and possibly higher) frequen-
cies will affect substantially THz optics and their applica-
tions in devices of compact cavities, adaptive lenses,
tunable mirrors, isolators, and converters. Moreover,
MMs with negative magnetic response can be combined
with plasmonic wires that exhibit negative permittivity,
producing left-handed materials (LHM), i.e., metamateri-
als with negative magnetic permeability u and dielectric
permitivity € leading to a negative index of refraction [7—
11]. In the present work we focus entirely on MMs that
have the additional features of being nonlinear as well as
discrete. While nonlinearity results in self-focusing, dis-
creteness induces localization and, as a result, the combi-
nation of both leads in the generation of nonlinearly
localized modes of the type of discrete breather (DB)
[12-16]. These modes act like stable impurity modes
that are dynamically generated and may alter propagation
and emission properties of the system.

We consider a planar one-dimensional (1D) array of N
identical SRRs with their axes perpendicular to the plane;
each unit is equivalent to an RLC oscillator with self-
inductance L, Ohmic resistance R, and capacitance C.
The units become nonlinear due to the Kerr dielectric
that fills their gap and has permittivity equal to e(|E|?) =
€)(€; + a|E|?/E2), where E is the electric component of
the applied electromagnetic field, E, is a characteristic
electric field, €, the linear permittivity, €, the permittivity
of the vacuum, and « = +1 (@ = —1) corresponding to
self-focusing (-defocusing) nonlinearity [17-19]. As a re-
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sult, the SRRs acquire a field-dependent capacitance
C(IE|*) = €e(|E,|*)A/d,, where A is the area of the cross
section of the SRR wire, Eg is the electric field induced
along the SRR slit, and d, is the size of the slit. Since
CcU,) = dQ,/dU,, the charge Q, stored in the capacitor
of the nth SRR is

2
Un >Un, n=12...N ()

=1+
Qn €< a36{zU§

where Cy = €y€¢A/d, is the linear capacitance, U, =
d,E,, is the voltage across the slit of the nth SRR, and
U. = dyE.. Neighboring SRRs are coupled due to mag-
netic dipole-dipole interaction through their mutual induc-
tance M, which decays as the cube of the distance. For
weak coupling between SRRs in a planar configuration, it
is a good approximation to consider only nearest neighbor-
ing SRR interactions. Then, the dynamics of Q, and the
current /,, circulating in the nth SRR is described by

dQ
n =1, 2
” 2
dln dlnfl d1n+1
L—"+RI, + = M(—L 420
at n T f(Q) ( 7 7 ) ISNE)

where £ is the electromotive force (emf) induced in each
SRR due to the applied field, and f(Q,) = U, is given
implicitly from Eq. (1). The value of £ at a given instant is
proportional to the magnetic field component of the ap-
plied field perpendicular to the SRR plane, and/or the
electric field component parallel to the side of the SRRs
which contains the slit [20]. Using the relations a)g2 =
LCe, T = tw(, Ic = Uca)({C(, Qc = C{/Uc,g = UCS,I,Z =
1.i,, O, = 0.q,, Eqs. (2) and (3) can be normalized to
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& iy = i+ Aiger) = iy = () + £l )
where v = RCywy is the loss coefficient, and A = M/L is
the coupling parameter. In the following, we use periodic
boundary conditions (i.e., iy+; = iy, ip = i) except oth-
erwise stated. Analytical solution of Eq. (1) for u,, = f(g,)
with the conditions of u, being real and u,(g, = 0) = 0,

gives the approximate expression
@
— 3
qn

a \2
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That is, the on-site potential V(g,) = [¢" f(g),)dqy, is soft
for focusing nonlinearity and hard for defocusing nonline-
arity. Substituting ¢g,, = A cos(kDn — (}7) into the linear-
ized Egs. (4) and (5) with ¢ = 0 and y = 0, we obtain the
frequency spectrum of linear excitations

Q; =[1—2Acos(kD)]"'/2, (7

f(g,) = q,

where () = w/w, is the normalized frequency, D is the
separation of neighboring SRR centers (unit cell size), and
k the wave number (—7 = kD = ).

The parameter A can be calculated numerically for any
SRR geometry, since the magnetic field of the current
circulating the SRR is well known. Here we estimate A
with a simple model [1], neglecting the effects of nonline-
arity and coupling on the resonance frequency [18]. For not
very small array dimensions, the inductance of a circular
SRR of radius a with circular cross section of diameter /4 is
L = poalln(16a/h) — 1.5], where u, is the permeability
of the vacuum. For a squared SRR with square cross
section with side length € =5 um, t=w =d, =1 um
the SRR depth, width, and slit size, respectively, length of
unit cell D =7 um [4], and using that €' = 4(€ — w) —

d, is the length of the axis of the wire, a = €'/27, h =

J4wt/ar, we arrive at L =~ 6 X 10~ '2 H. For this L, we find
the capacitance necessary for providing the resonance
frequency for a single SRR, f, =~ 1/27/LC; = 6.2 THz
(consistent with the available experimental information
[4]) to be C; = 11 X 107! F. Consider two neighboring
SRRs (1 and 2) in an array of circular SRRs of radius a
with circular cross section of diameter 4. The flux ®,
threading SRR 2 due to the induced magnetic field in
SRR 1 B,(r) = uySI /4w + O((a/r)?), where I, is the
induced current in SRR 1, S = 7a? is the SRR area, and r
is the distance from its center (r ~ D), is approximately
®, ~ B,(r = D)S. Then, M = ®, /I, =~ uyS*/47D? and
A= (7/4)(a/D)}/[In(16a/h) — 1.5]. For an array of
squared SRRs with square cross section with dimensions
as in [4] we obtain A = (¢//D)3/327*[In(4€'/Jawt) —
1.5] = 0.02. For silver made SRRs, whose conductivity
and skin depth are o =~ 6.15 X 10’ S/m and § ~ 20 nm,
respectively, we obtain R = 2a/ohd = {'[206~/7wt =~
3.44, and y = 0.01.

We consider first the lossless case without applied field
(y = 0, e = 0). Then, Egs. (4) and (5) can be derived from
the Hamiltonian

g-[ Z{zqn + V(Qn Aqnqn+1} (8)

For Hamiltonian systems DBs may be constructed from the
anticontinuous (ac) limit [14], where all oscillators are un-
coupled (A — 0), obeying identical dynamical equations.
Fixing the amplitude of one of them (say, the one located at
n = n,) to a specific value g,, with the corresponding
current i, = 0, we can determine the oscillation period
T}, An initial condition with g, = O forany n # n;, q,, =
qp, and ¢, = i, = 0 for any n, represents a trivial DB.
Continuation of this solution for A # 0 using the Newton’s
method [14], results in numerically exact DBsS up to A,
where the linear excitation frequency band (which expands
with increasing A) reaches the DB frequency w, = 27/T),.
The linear stability of Hamiltonian DBs is addressed
through the eigenvalues of the monodromy matrix
(Floquet coefficients). Figure 1 shows the time evolution
of a typical, linearly stable, highly localized DB excitation
(Amax ~ 0.067 for the chosen parameters). In this figure,
plotted versus time ¢ and array site n, is the normalized
current i, circulating the nth SRR. Another trivial DB can
be obtained for g, = g, for any n # n,, g, =0, and
¢, = i, = 0 for any n, corresponding to what we could
call a “dark” DB in analogy with the dark soliton in non-
linear continuous systems. Such a DB can be continued up
to A ~0.025 but it is linearly unstable except for very
small A. In order to investigate the mobility of these DBs
we followed the procedure described by Chen et al. [16].
According to this work, in order to generate a (steady state)
moving DB, having obtained a static DB (q°, i’ = 0) by
Newton’s method, we integrate Eqgs. (4) and (5) using
as initial condition (q(7=0),i(r=0))=(q"i°=0)+

(0,61), where A, is the perturbation strength, and the
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FIG. 1 (color online). Time evolution of a Hamiltonian
breather for approximately two periods for A = 0.02, T, =
6.69, « = +1, €, =2, and N = 50.
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FIG. 2. Moving Hamiltonian breathers. Right: breather ampli-
tude for T, = 6.69, a = +1, ¢, =2, N =50, and A = 0.062
Left: space-time evolution of the center of energy Xy for the
breather shown in the right figure, for A, = 0.1 (solid line), 0.2
(dotted line), 0.3 (dashed line).

perturbation vector §i corresponds to the current part of the
(normalized to unity) pinning mode eigenvector. The re-
sulting DB motion is followed by plotting the instanta-
neous center of localization of energy Xy of the DB for
several values of A, and a A value close to Ay, (Fig. 2); the
parameter Xy is defined as

N
Xp = nE,/Eq. ©
n=1

where E, is the energy at site n and E,, = YN | E,. We
note that Hamiltonian DBs move slowly through the lattice
as a result of the perturbation. Their velocity decreases
with increasing A, although not uniformly with A,; in
particular, the DB velocity as a function of A decreases
faster as A, increases.

In order to generate DBs for the forced and damped
system we start by solving Egs. (4) and (5) in the ac limit
[15] with emf &(7) = g;sin(Q27). We identify two differ-
ent amplitude attractors of the single SRR oscillator, with
amplitudes g, = 1.6086 and g, = 0.2866 for the high and
low amplitude attractor, respectively. Subsequently, we fix
the amplitude of one of the oscillators (say, the one at n =
ny) to g, and all the others to g, (i, are all set to zero).
Using this configuration as initial condition, we turn on
adiabatically the coupling A.

The initial condition can be continued for A # 0 leading
to dissipative DB formation [15]. The time evolution of a
typical dissipative DB is shown in Fig. 3. Both the DB and
the background are oscillating with different amplitudes
(high and low, respectively). This should be compared to
the Hamiltonian DB in Fig. 1, where the background is
always zero. By interchanging ¢, and ¢, in the initial
conditions, we obtain another DB oscillating with low
amplitude, while the background oscillates with high am-
plitude (Fig. 4). With appropriate initial conditions we can
also obtain multibreathers where two or more sites oscil-
late with high (low) amplitude, while the other ones with
low (high) amplitude. Next, we fix the amplitude of half of
the SRRs in the array (say, those for n > N/2) to g, and the
others to g, and integrate Egs. (4) and (5) from the ac limit
with open-ended boundary conditions (i.e., iyy+; = ip =

7
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FIG. 3 (color online). Time evolution of a one-site dissipative

breather during approximately two periods for 7;, = 6.82, A =
0.02, y =0.01, gg = 0.04, « = +1, €, = 2, and N = 50.

0). In this way we obtain an oscillating domain wall, as
shown in Fig. 5.

The Hamiltonian DBs investigated are linearly stable,
ensuring that they are not affected by small amplitude
perturbations. On the other hand, the dissipative DBs are
attractors for initial conditions in the corresponding basin
of attraction and are robust against different kinds of small
perturbations [15]. We analyzed numerically and con-
firmed the stability of the DBs presented above under
various kinds of perturbations; we followed the purturbed
DB evolution for long time intervals (over 2 X 10%T})
without observing any significant change in the DB shape
[21].

The dissipative system, which includes forcing due to
the applied field, offers the possibility to study its magnetic
response. Assume that the emf is induced by the magnetic
component H = H cos(wt) of the applied field. Then, at
least for uniform solutions (/, = I), the magnetization
M = SI/D? can be defined. In the direction perpendicular

1.5
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FIG. 4 (color online). Time evolution of a one-site dissipative
breather of the second type (see text) during approximately two
periods, for A = 0.01 and the other parameters as in Fig. 3.
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FIG. 5 (color online). Time evolution of a domain-wall
breather during approximately two periods. Parameters as in
Fig. 3.

to the SRRs plane, the general relation B = uy(H + M)
gives

B = By(cos(Q7) + ki(7)), (10)

where By = gyU,./SQw, and k = uyS?Q/gyD3L. For
the material parameters used above k = 3. From Eq. (10)
negative magnetic response appears whenever the second
term in the parentheses is larger in magnitude than the first
one, and has opposite sign. Then, one may assign a nega-
tive u to the medium. Without nonlinearity, the unique,
uniform solution for the SRR array gives positive response
below the resonance frequency (~ w). Nonlinearity allows
the existence of multiple stable states, which makes it
possible to obtain either positive or negative u below wy,
depending on the state of the system. Moreover, exploiting
DB excitations, MMs with domains of opposite sign mag-
netic responses can be created. In Fig. 6 we show the time
evolution of cos()7) and «i,(7) as well as their sum, for
two SRRs of the domain-wall DB (Fig. 5), relatively far
from the domain-wall and the ends. The SRR with low
amplitude current oscillation (n = 15) shows positive
(paramagnetic) response. In contrast, the SRR with high

()
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FIG. 6 (color online). Time evolution of «i,(7) (red curve),
compared with cos(Q27) (black curve), and their sum (green
curve), for two SRRs of the domain-wall DB excitation.
(a) Low amplitude current oscillation SRR (n = 15); (b) high
amplitude current oscillation SRR (n = 35). Parameters as in
Fig. 3.

amplitude current oscillation (n = 35) shows extreme dia-
magnetic (negative) response, since ki, (7) is almost out of
phase with cos({27) and much larger in magnitude than
that. Thus, for large enough SRR arrays, one may obtain
domain-wall DBs connecting domains of the array with
positive and negative u.

In conclusion, a 1D planar array of nonlinear SRRs
coupled through nearest-neighbor mutual inductancies
was investigated numerically. The existence of DBs of
various types, for both the energy-conserved and the dis-
sipative systems, was demonstrated. We note that longer
range interaction does not affect substantially the DB
properties [21]. We found that Hamiltonian DBs may be
set into uniform motion under a small perturbation. We
also obtained a special DB solution (magnetization domain
wall), which separates domains of the array with different
magnetization. Multiple magnetization states are possible
in this system due to nonlinearity, which allows either for
negative or positive u below resonance. Moreover, one can
exploit multibreathers and domain-wall DBs to create
MMs with domains of opposite sign magnetic response.
Discreteness effects may appear in SRR arrays with di-
mensions close to those reported in [4], even though the
field wavelength is much larger than the array dimensions.
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