PRL 97, 156403 (2006)

PHYSICAL REVIEW LETTERS

week ending
13 OCTOBER 2006

Effect of Suddenly Turning on Interactions in the Luttinger Model

M. A. Cazalilla

Donostia International Physics Center (DIPC), Manuel de Lardizabal 4, 20018-Donostia, Spain
(Received 19 June 2006; published 12 October 2006)

The evolution of correlations in the exactly solvable Luttinger model (a model of interacting fermions
in one dimension) after a suddenly switched-on interaction is analytically studied. When the model is
defined on a finite-size ring, zero-temperature correlations are periodic in time. However, in the
thermodynamic limit, the system relaxes algebraically towards a stationary state which is well described,
at least for some simple correlation functions, by the generalized Gibbs ensemble recently introduced by
Rigol et al. (cond-mat/0604476). The critical exponent that characterizes the decay of the one-particle
correlation function is different from the known equilibrium exponents. Experiments for which these

results can be relevant are also discussed.
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Experiments with cold atomic gases are motivating re-
search into problems that previously would have looked
highly academic. One such problem concerns the evolution
of a quantum many-body system where interactions (or
other parameters of the system) are time dependent. An
example is an interaction quench: an experiment where the
strength of interactions is suddenly changed. This type of
experiment is feasible nowadays thanks to the phenomenon
known as Feshbach resonance [1], which allows us to tune
the strength and sign of interactions in a cold atomic gas by
means of a magnetic field. If the applied magnetic field is
time dependent, the interactions become time dependent.
Alternatively, in optical lattices [2], it is possible to change
the lattice parameters in a time-dependent fashion, which
effectively amounts to varying the ratio of the interaction to
the kinetic energy in time. On the theory side, the recent
development of time-dependent extensions of the density-
matrix renormalization-group algorithm [3] has spurred
the interest in understanding the properties of quantum
many-body systems out of equilibrium and, in particular,
in the dynamics following a quench.

Because of these new possibilities, the evolution of
observables and correlations following a sudden change
of the system parameters is attracting much theoretical
interest [4—13]. One interesting question that has been
raised by a recent experiment in an array of 1D cold atomic
gases [14] is whether, after a quench, a system possessing
an infinite number of integrals of motion can exhibit re-
laxation towards a steady state or not. This question has
been analyzed by the authors of Ref. [12], who have
numerically shown that the steady state of an integrable
gas of hard-core bosons is described by a generalized
Gibbs distribution that maximizes the entropy with all
possible constraints imposed by the existence of the (infi-
nite number of) integrals of motion. Here the effect of
suddenly turning on the interactions in the Luttinger model
is analytically studied. It is shown that, when the model is
defined on a finite-size ring, the asymptotic form of the
two-point one-body and density correlations at zero tem-
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perature is periodic in time, and therefore the system
exhibits no relaxation to a steady state with time-
independent properties. In the thermodynamic limit, how-
ever, the same correlation functions relax to a steady state,
whose properties are different from those of the ground
state. Indeed, the decay of the one-particle correlations
with distance is governed by a critical exponent which is
different from the known equilibrium exponents.
Interestingly, one-particle and density correlations in the
steady state can be obtained using the generalized Gibbs
ensemble introduced by Rigol et al. in Ref. [12].

The Luttinger model (LM) describes a system of inter-
acting fermions in one dimension. It was introduced by
Luttinger [15] in 1963, but the correct exact solution was
found in 1965 by Lieb and Mattis [16]. Asymptotic forms
of one- and two-particle correlations in equilibrium were
obtained by Luther and Peschel [17]. Later, Haldane [18—
20] proposed that this model describes the low-energy
properties of systems in the Tomonaga-Luttinger liquid
(TLL) universality class [18,21,22].

The Hamiltonian of the LM is Hyy; = Hy + H, + H,,
where Hy =Y, hvpp : Ji(p)L(p): is the free-
fermion Hamiltonian, and interactions are described by
Hy, =273 e)(q)Jr(q)Jr(q) and Hy, =2Z%  ei(q)
: Jo(@)Jo(—q) :. The Fermi operators {i,(p), :/f;g(p’)} =
1) » pr8a, g (o, B=L,R) and anticommute otherwise. To
avoid a degenerate ground state, antiperiodic boundary
conditions are chosen: ¢,(x + L) = —¢,(x) [¢,(x) =
> e Y, (p)/ VL is the Fermi field operator, sz =
—s; = +1, and L is the length of the system] so that p =
2a(n — %) /L, and n is an integer. The “current” operators
To(@) =3, : ¥h(p + @)ha(p) =, where q = 2am/L, m
being an integer; : - - - : stands for the normal order pre-
scription [19]. Thus, the above model describes a system of
fermions interacting via the four-fermion terms H, and H,.
Fermions come in two chiralities, R and L standing for
right-moving and left-moving particles, respectively. The
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dispersion is linear and therefore it is not bounded from
below. To define a stable ground state for H, all single-
particle levels with p <0 are filled up for both chiralities,
which yields a Dirac sea which will be denoted as |0). The
coupling functions g,(q) and g4(g) are assumed to be finite
for ¢ = 0. Moreover, to ensure that the Hilbert space of
Hi )y and H, remain the same and, in particular, that their
ground states have a finite overlap at finite L, g,(q)/[vp +
4(q)]1— O faster than |g|~'/? as |g| — oo and |g,(¢)| <
lvp + g4(g)l for all g [19].

The currents obey a Kac-Moody algebra [16,19,21,22]:
[Jalq). J(q)] = %8q+qg0 84 p- This fact allows one to
introduce, for g # 0, the following operators: by(g) =
—i(27/|qIL)'*[6(q)Jr(—q) — 6(—q)J..(q)] and bl (g) =
i(2m/|qIL)"*[0(q)Jr(q) — 6(—q)J.(—q)], which obey
the standard algebra of boson (‘‘phonon’) operators.
Moreover, there are two conserved operators 6N = Ny +
Ny, i.e., the number operator referred to the ground state
|0), and the total current J = N — N, where N, =
J,(0). For fermions, the physical states obey the selection
rule (—1)°" = (—1)’. In terms of the boson operators
bg (g), bo(g) the Hamiltonian Hpy; is quadratic but not
diagonal. It can be diagonalized by means of a
Bogoliubov (“‘squeezing’’) transformation [16]:

b(q) = coshe(q)by(q) + sinhe(9)bl(—q), (1)

bt(q) = sinhe(q)by(—q) + coshe(g)bl(q).  (2)

To render H;,; diagonal, tanh2¢(q) = g,(q)/[vF +
g4(¢)]l. Thus the Hamiltonian becomes Hpy =
Zqiohv(q)lqle(q)b(q) + hmuySN?/2L + harv,J? /2L
[19], where v(q) = {[vr + gu(@)F — &3(@}'2 vy =
ve??, and v; = ve ?¢ [19], being v = v(0) and ¢ =
#(0).

Let us now consider an interaction quench in the LM.
Here I consider only the case where the coupling functions
g2(g) and g4(q) are suddenly switched on at ¢ = 0. Thus,
the initial state of the system will be described by a thermal
distribution determined by the noninteracting Hamiltonian
Hy, p(t=0)= po= e ™/T/7, where Z, = Tre H/T,
However, for ¢ > 0, the evolution is dictated by the full
Hamiltonian Hyy;. A more general type of quench corre-
sponds to a sudden switch between two different forms of
g2(q) and g4(g). Whereas the results described below can
be generalized to such a case, I believe a quench from the
noninteracting limit is most interesting because the spec-
trum of H, contains free fermions whereas the spectrum of
Hy )y does not [16,17,19,21,22]. Thus, a sudden switch on
of the interactions describes a time-dependent destruction
of the characteristic discontinuity of the momentum distri-
bution at the Fermi points where p = 0.

Equal time correlations of an operator O(x) read

Colx, 1) = (™n/" 0T (x)O(0)e = Hni/h), (3)

= Trpye /"0 (x) 0(0)e = Himt/h, 4)

Note that since [Hy, Hyp] # 0, Co(x, 1) is explicitly time
dependent. Indeed, in the LM model time dependence
stems from H,, since [H,, H,] = 0. H, describes scattering
between fermions moving in opposite directions, and, as
shown below, it entangles excitation modes of opposite q.

Using the transformation (1) and (2) and its inverse,
along with b(g, 1) = et/ p(g)e~iHmt/h = g=iv(@ldltp(g)
and b1(g, 1) = ¢ @llpt(g), the exact evolution of by(g)
under Hpyp can be obtained:

bo(q, 1) = f(g, Dbo(q) + g°(q, Db (—q),  (5)

where bO(q! t) = eiHLMt/th(q)e_iHLM[/h9 f(CI: t) =
cosv(q)lqlt — isinv(q)|gltcosh2ep(g), and  glg,1) =
i sinv(q)|q|t sinh2¢(g). Note that this form obeys the cor-
rect boundary condition by(g, 0) = by(g). Entanglement
between modes of opposite g vanishes for ¢(g) = 0 [i.e.,
g2(g) = 0] in agreement with the above discussion.

The evolution of one-particle correlations [i.e., O(x) =
i, (x)] can be obtained from Eq. (5) and the bosonization

formula [17,19,21,22]: ¢h4(x) = 527 e™ete), mp 2 7,

being two different Pauli matrices that ensure the anticom-
mutation of the left- and right-moving Fermi fields; s, = 1
for a =R and s, = —1 for a = L, ¢,(x) = 5,004 +
27xN, /L + ®L(x) + ®,(x), where [N,, ®ogl = 18,
D, (x) =3 ~0(27/qL)2e™ 1261520 b (s,,q), and a —
0". Expressions for the correlations following the quench
look formally very similar to those obtained for time-
dependent correlations in the ground state of Hyy; [17].
Calculations are greatly simplified by considering a model
where sinh2¢(g) = e 14%l/2sinh2e, with Ry < L being
of the order of the range of the g,(g) interaction, and
replacing v(g) by its ¢ = 0 value. This is the natural
extension of the model used to obtain the universal (i.e.,
independent of R,, up to prefactors) behavior of the
ground-state correlations [17,19]. This behavior is domi-
nated by states where excitations are predominately near
the Fermi level so that it is accurate to replace in the
calculations ¢(g) and v(g) by their g = 0 values [16,17].
In the present case, although |0) is a rather complicated
excited state of Hyyy, since g,(g) and g4(g) decay very
rapidly far from g = 0, this approximation is also expected
to be accurate. For a system of size L at T = 0, the leading
term of the one-body correlations is given by the following
expression:

_ 0 Ry, 77
C,, (1> 0IL) = G (le)[d(le)}
d(x — 2ut|L)d(x + 2vt|L)77*/2
[ [d2vt|L)]? } ’

(6)

where d(x|L) = L|sin(arx/L)|/7 is the cord function,
Gg))(le) = i/[2L sin7r(x + ia)/L] the noninteracting
correlation function, and y = sinh2¢. The above expres-
sion is accurate asymptotically, i.e., for d(x * 2vt|L),
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d(x|L), d(2vt|L) > R,. It can be seen that the one-particle
correlations are periodic in time: Cy, (x, 1 + Ty|L) =
Cy,(x, L) with Ty = L/2v. This implies that the finite-
size LM does not relax, which is a consequence of the
(approximately) linear dispersion of the eigenmodes near
g = 0 along with the absence of any damping mecha-
nisms in the LM (see discussion at the end). However, in
the thermodynamic limit, L — o and d(x|L)— |x].
Therefore, Eq. (6) becomes

[ y? v2/2

27 (x + ia)

Ry

Ry x2 — QQut)?
x

C‘//R (x, t> O) = (21_)[)2

)

It is interesting to analyze the above expression in the

limit 2vt < |x|, where C,, (Ry < 2vt < |x]) = z#é(i)m)’

Z(1) = (Ry/2v1)?" being a time-dependent renormaliza-
tion constant of the Fermi quasiparticles. Thus for short
times the system behaves as a Fermi liquid, with a singu-
larity at the Fermi points given by Z(r), which decreases
with time. On the other hand, for 2vt > |x| the correlation
takes a non-Fermi liquid form:

i ¥

27 (x + ia)

Ry

Cy,(Ry < |x] < 201) = ~ (8)

In particular, in the limit # — + o0 one-particle correlations
relax to the power law on the right-hand side of Eq. (8).
Notice that, although C,, (x, t — 00) exhibits a power-law
behavior, the latter is governed by an exponent that is
different from the one that governs asymptotic ground-
state correlations [17,19], y3 = 2sinh?¢ < y? = sinh*2¢
for ¢ # 0. The origin of this new exponent will be dis-
cussed below.

The different behavior of Cy (x, #) for short and long
times can be understood in terms of a “light-cone” effect
[11]: The initial state |0) has higher energy than the ground
state of Hjy; (see discussion further below). Therefore, it
contains long wavelength phonons that propagate (ap-
proximately) from time = 0 to time = ¢ along light cones
where the role of speed of light is played by v. These
excitations determine which points retain the same type of
correlations found in |0) and which points acquire new
correlations. The latter phenomenon and the overall struc-
ture of (7) bear some resemblance to results reported in
Ref. [11]. Nevertheless, I have so far failed to extend the
methods of [11] to the quench in the LM. There are two
main differences: First, the initial state in the present case
is critical, and therefore it does not have any characteristic
(gap) energy scale as the initial states considered in [11].
Second, and more importantly, the critical exponent found
above is different from the bulk or boundary exponents of
the field operator g (x).

One may think that the relaxation behavior exhibited by
Cy,(x, 1) in the thermodynamic limit is because the field
operator, {/z(x), is a nonlinear function of by(¢g) and b(‘; (g).
However, the (density) operator J(x) = 9, ¢@g(x)/2 also

exhibits relaxation. Setting O(x) = Jg(x) in (4), the fol-
lowing is obtained using Eq. (5):

L 14y a
Cy(x 1IL) = 477-2{[d(x|L)]2 2[d(x — 2vt|L)P
,),2
~ 2[d(x + 2vt|L)]2}' ?

For finite L the density correlation function is again peri-
odic in time. However, for L — oo, it shows relaxation:
C;,(x,t — |L) = —(1 + ¥?)/(47*x?). This form again
deviates from the ground-state behavior, where the pre-
factor of —1/(4m*x?) is cosh2¢ — sinh2¢ = e 2%
[19,21,22].

It is interesting to find that the above results in the t — o0
limit can be analytically obtained from the generalized
Gibbs distribution introduced in Ref. [12], which is de-
scribed by the following density matrix:

1
PG = - e2M@I(9), (10)
gG
where Z,; = TreXX9@) and [H, I(q)] = [I(¢), I(¢')] =
0, that is, the set of all independent integrals of motion.
Since [Hyy, n(q)] = 0, where n(q) = b'(q)b(g), the pho-
non occupancy operators seem as the most natural choice
for I(g). The Lagrange multipliers A(g) are obtained from
the condition [12]

(n(g))i=o = Oln(@)|0) = (n(g))ec = Trlpycnl(g)], (11)

where T = 0 was assumed. Using (1) and (2), {0|n(g)|0) =
sinh?¢(g), which is a nonthermal distribution. However,
A(g) does not need to be obtained explicitly, as it suffices to
realize that p ¢ has the same form as the distribution in the
canonical ensemble with H/T = =3 A(g)n(q). One can
also regard p,; as a canonical distribution with a
g-dependent temperature, T(q) = —hv(q)|ql/A(q). Using
this fact, I find that

Choy (@) = Tip G (Pe(0) = lim Cy, (1), (12)

Ci0 () = TrpyoJx(@WJx(0) = lim Cy (6 1) (13)

Thus, at least for these simple correlation functions, it
seems that the generalized Gibbs distribution describes
the stationary state of the LM after an interaction quench.
The reason why the critical exponent y? turns out to be
different from the known equilibrium exponents can be
thus explained in two different ways: Mathematically, it is
seen that in order to obtain the evolution of the operator
bo(g) [Eq. (5)] one has to do and undo the Bogoliubov
transformation (1) and (2). However, these transformations
do not cancel each other exactly (except at t = 0) because
of the phase factors e*@ll" introduced by the time
evolution operator. In contrast, in the equilibrium prob-
lem, since the expectation value is taken over the ground
state of Hpp, the Bogoliubov transformation is per-
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formed only once. Physically, in view of the results (12)
and (13), the difference in exponent can be regarded a
consequence of the nonequilibrium distribution of phonons
(0|n(gq)|0y = sinh?¢(q), which is a constant of motion.

Let us finally consider where the above predictions
could be experimentally relevant. To date, there are no
exact realizations of the LM in nature. However, one can
exploit the fact that the LM describes the low-energy
properties of Tomonaga-Luttinger liquids [19,21,22], of
which several physical realizations in cold atomic gases
are available [14,23,24]. Let us therefore consider a single-
species Fermi gas confined to one dimension in a strongly
anisotropic trap [24]. In a single-species cold Fermi gas,
p-wave interactions are naturally negligible. One possibil-
ity to realize a sudden change of the interaction strength is
to use a p-wave Feshbach resonance [24], which enhances
the strength of this interaction. Alternatively, one can use a
1D dipolar Fermi gas, where long-distance interactions are
described by the potential:

1 D?*(1 — 3cos6)
4rey [x> + R

Viip(x, 0) = , (14)
D being the dipolar momentum of the atoms and 6 is the
angle subtended by the direction of the atomic motion and
an electric field (or magnetic, for magnetic dipoles) that
polarizes the gas. In the above expression Ry is of the or-
der of the transverse size of the cloud. The Fourier trans-
form of (14) is Vg, = A(0)|gRo|K (IgRol) = g2(q) =
g4(q), where A(8) = D*(1 — 3cos)/2meyR3 and K, (x)
is the modified Bessel function of the first kind. A suddenly
switched on Vj;,(g, 6) can be realized by deviating the
electric field that polarizes the gas from the “magic” angle
0, = cos’l(%), for which (14) vanishes [i.e., A(6,,) = O].

However, the full Hamiltonian for a TLL contains an
infinite series of terms that spoil the integrability of the LM
[18,19]. Roughly speaking, these stem from the nonlinear-
ity of the fermion dispersion and the fact that interactions
couple right- and left-moving modes in a way that is highly
nonlinear in terms of the boson fields ¢,(x) (umklapp
scattering) [18]. In a TLL all these deviations are irrelevant
in the renormalization-group sense, which means that their
effect on low-energy states is small. Nevertheless, after a
sudden change of the interaction in the systems described
above, high-energy excitations will be created that are not
described by the LM. Exciting many fermions to levels
very far from the Fermi level where the LM description is
not accurate can be avoided by turning on the interaction to
a value much smaller than the Fermi energy. On the other
hand, low-energy excitations will survive for longer times
and, since they dominate the long-time dynamics, the
behavior of the correlations will be described by the above
results. Thus, if the quench was conducted at zero tem-
perature, since the atomic systems are finite, an approxi-
mately periodic behavior of correlations can be expected.
However, Fermi gases are usually hard to cool down, and a
situation where temperature is larger than level spacing

(i.e., T > hwvgp/L) is perfectly realistic. In this situation,
one should consider correlations at finite 7', neglecting
finite-size effects. The latter can be obtained from Eq. (6)
upon replacing Lsin(wx/L)/7m by (hvp/#T) X
sinh(77Tx/hvg), etc. Thus relaxation takes place because
temperature induces a finite correlation length in the initial
state and therefore correlations decay exponentially. One-
body correlations can be accessed through the momentum
distribution, which can be measured in a time of flight
experiment. Thus the steady state momentum distribution
following a suddenly switched-on interaction should differ
from the equilibrium distribution at the same temperature.
A more detailed analysis will be given elsewhere [25].

This work was supported by Gipuzkoako Foru Aldundia
and MEC (Spain) under Grant No. FIS2004-06490-
C03-00.

[1] J.L. Roberts et al., Phys. Rev. Lett. 81, 5109 (1998);
T. Loftus et al., Phys. Rev. Lett. 88, 173201 (2002).

[2] M. Greiner et al., Nature (London) 415, 39 (2002).

[3] M. A. Cazalilla and J. B. Marston, Phys. Rev. Lett. 88,
256403 (2002); G. Vidal, Phys. Rev. Lett. 93, 040502
(2004); A.J. Daley et al., J. Stat. Mech. (2004) P04005;
S.R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004); F. Verstraete, J.J. Garcia-Ripoll, and J.1. Cirac,
Phys. Rev. Lett. 93, 207205 (2004).

[4] E. Altman and A. Auerbach, Phys. Rev. Lett. 89, 250404
(2002).

[5] R.A. Barankov and L. S. Levitov, cond-mat/0506323.

[6] E.A. Yuzbashyan et al., Phys. Rev. B 72, 220503 (2005).

[7] C. Kollath et al., Phys. Rev. A 71, 053606 (2005).

[8] E. Altman and A. Vishwanath, Phys. Rev. Lett. 95, 110404
(2005).

[9] R.A. Ruschhaupt, A. del Campo, and J.G. Muga,
condmat/0601437 [Eur. Phys. J. D (to be published)].

[10] E.A. Yuzbashyan and M. Dzero, Phys. Rev. Lett. 96,
230404 (2006).

[11] P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801
(2000).

[12] M. Rigol et al., cond-mat/0604476.

[13] K. Rodrigez et al., New J. Phys. 8, 169 (2006).

[14] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London)
440, 900 (2006).

[15] J.M. Luttinger, J. Math. Phys. (N.Y.) 4, 1154 (1963).

[16] E.H. Lieb and D.C. Mattis, J. Math. Phys. (N.Y.) 6, 304
(1965).

[17] A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).

[18] F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).

[19] F.D.M. Haldane, J. Phys. C 14, 2585 (1981).

[20] F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).

[21] A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik,
Bosonization and  Strongly  Interacting  Systems
(Cambridge University Press, Cambridge, 1998).

[22] T. Giamarchi, Quantum Physics in One Dimension
(Oxford University Press, Oxford, 2004).

[23] T. Stoferle et al., Phys. Rev. Lett. 92, 130403 (2004).

[24] K. Giinter et al., Phys. Rev. Lett. 95, 230401 (2005).

[25] M. A. Cazalilla (unpublished).

156403-4



