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Multiplicative logarithmic corrections frequently characterize critical behavior in statistical physics.
Here, a recently proposed theory relating the exponents of such terms is extended to account for
circumstances which often occur when the leading specific-heat critical exponent vanishes. Also, the
theory is widened to encompass the correlation function. The new relations are then confronted with
results from the literature, and some new predictions for logarithmic corrections in certain models are
made.
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In a recent Letter, we presented three new relations
between some of the exponents of multiplicative logarith-
mic corrections to scaling which are frequently manifest in
statistical physics [1]. While two of these relations were
demonstrated to hold generally, the third fails in certain
circumstances where the specific-heat leading exponent �
vanishes. Here, a broad theory which encompasses such
scenarios is presented and a fourth general scaling relation
for such logarithms is derived. Together, these amount to
logarithmic analogs of the standard scaling relations be-
tween the leading exponents, which are well established
and fundamentally important in statistical mechanics (see,
e.g., Refs. [2,3] and references therein).

Denoting the reduced temperature by t, we address the
circumstances in d dimensions where the correlation
length, specific heat, susceptibility and correlation-
function scale, respectively, as [1]

 �1�t� � jtj��j lnjtjj�̂; (1)

 C1�t� � jtj��j lnjtjj�̂; (2)

 �1�t� � jtj
��j lnjtjj�̂; (3)

 G 1�x; t� � x
��d�2����lnx��̂D

�
x

�1�t�

�
; (4)

in which x represents position on the lattice, whose extent
is indicated by the subscript. When this is finite, the
counterpart of (1) may be assumed to be [1]

 �L�0� � L�lnL�q̂: (5)

The aim of this Letter is to establish full logarithmic
analogs of the following two standard scaling relations:

 �d � 2� �; (6)

 ��2� �� � �: (7)

The relation (6) was developed by Widom [4] (see also
Ref. [5]) who also showed how a logarithmic singularity
may arise in the specific heat if � � 0 with, in general, a
superimposed finite discontinuity (see also Ref. [6]). The
second relation (7) is due to Fisher [7]. For an authoritative
and comprehensive outline of the development of the
original scaling relations, the reader is referred to Ref. [2].

The scaling theory presented herein is based on self-
consistencies, which are manifest as relations between the
various correction exponents. For ab initio model-specific
theories, the renormalization group and related approaches
are appropriate [8], and the reader is again referred to
Ref. [2] for a review. Our approach is not dependent on
such renormalization group considerations.

In Ref. [1], we used a Lee-Yang analysis to establish the
following scaling relation between the exponents of the
logarithmic corrections analogous to (6):

 �̂ � dq̂� d�̂; (8)

and this formula was confronted with a variety of results
from the literature. While it holds in most models, excep-
tional cases that were identified include the pure Ising
model in two dimensions and its uncorrelated, quenched,
random disordered counterpart. Indeed, it is not altogether
surprising that a Lee-Yang analysis, which focuses on a
complex odd (magnetic) scaling field, cannot completely
realize the general relationship between the even correc-
tion exponents appearing in (8). The first main aim of this
Letter is to redress this situation by appealing to Fisher
zeros, which are appropriate to the even sector and to
present a complete theory for the logarithmic analog of
(6), which also neatly encapsulates the d � 2 (pure and
random) Ising cases. The second main aim is to present a
complementary analog of Fisher’s scaling relation (7) in-
volving the correlation-function correction exponent �̂ and
confront it with the literature. We now address these two
issues in sequence.
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In two dimensions, the pure Ising model has �̂ � 1 and,
since all other correction exponents vanish, (8) fails there.
It also fails in the version with random-bond disorder,
where q̂ � 0 [9,10], �̂ � 0, �̂ � 1=2, and [11,12]

 C1�t� � lnj lnjtjj: (9)

Numerical works supportive of the vanishing of �̂ and the
double-logarithmically divergent specific heat are found in
Refs. [9,13,14] (see also Ref. [15]) and Ref. [16] for both
the random-bond and site-diluted models, respectively.
However, there has been considerable disparity in the
literature as to the precise scaling behavior, and counter
claims that the specific heat remains finite in the random-
bond [17,18] and random-site versions [19,20] also exist
(see also Ref. [21]).

While it was mooted in Ref. [1] that the detailed loga-
rithmic corrections in the random-bond and random-site
Ising models in d � 2 dimensions may in principle differ,
it is herein clarified that this is not, in fact, expected to be
the case. Whereas in Ref. [1], the Lee-Yang zeros were
used to link the even and odd scaling fields, we now appeal
to the Fisher zeros of the even sector [6], as that is where
the apparent specific heat anomaly related to (8) lies. The
puzzle is resolved as being due to two special properties of
the pure and random Ising models, namely, the vanishing
of � and the manner in which the Fisher zeros in these
models impact onto the real axis.

From the finite-size scaling (FSS) hypothesis, one has,
for the specific heat [22],

 

CL�0�
C1�t�

� FC

�
�L�0�
�1�t�

�
: (10)

Fixing the scaling ratio �L�0�=�1�t� gives t�
L�1=��lnL���̂�q̂�=�, which from (2) yields

 CL�0� � L�=��lnL��̂����̂�q̂�=�: (11)

A FSS theory for partition function zeros for pure power-
law scaling was formulated in Ref. [23] by writing the
partition function for a finite-size system as a function of
the scaling ratio there. Here, allowing for logarithmic
corrections, this partition function may be written as
ZL�t� � Q��L�0�=�1�t�� and vanishes at a Fisher zero.
Labeling the jth such zero as tj�L�, one has

 

�L�0�
�1�tj�L��

� Q�1
j �0�; (12)

where Q�1
j �0� is the jth complex root of Q. Therefore

 jtj�L�j � L
�1=��lnL���̂�q̂�=�: (13)

No assumptions other than the validity of FSS have been
used to derive (11) and (13).

The total number of conjugate pairs of zeros, N , in a
suitable variable t is proportional to the lattice volume so
that N / Ld. The full expression for the scaling of the jth
zero is given in Ref. [24] (see also Refs. [23,25]) as a

function of a fraction of the total number of zeros �2j�
1�=2Ld. Then, allowing for logarithmic corrections, (13) is
more appropriately written as

 tj�L� �
�
j� 1=2

Ld

�
1=�d

�
ln
�
j� 1=2

Ld

��
��̂�q̂�=�

exp�i�j�L��;

(14)

where �j�L� is the argument of the jth zero. In all known
cases, the Fisher zeros for isotropic models on homopo-
lygonal lattices lie on curves in the complex plane and
impact onto the real axis along a singular line [26]. We
assume this scenario, and denote the impact angle onto the
real axis in the thermodynamic limit by �.

Now, writing the finite-size partition function in terms of
its Fisher zeros or free-energy singularities,

 ZL�t� /
YN
j�1

�t� tj�L���t� t	j �L��; (15)

where tj�L� and t	j �L� are complex conjugate pairs.
Assume that the M /N zeros which dominate scaling
behavior close to the critical point are described by the
scaling form (14). Appropriate differentiation gives for the
specific heat at t � 0

 CL�0� � �L�d Re
XM
j�1

t�2
j �L�; (16)

having included the volume factor L�d.
In the case where �d � 2, so that � � 0 by (6), one finds

that the FSS expression (16) gives for the singular part of
the specific heat

 CL�0� � L�d��=2�lnL��2��̂�q̂�=�: (17)

Comparison with (11) leads to the recovery of (8).
If, however, � � 0, so that �d � 2 by (6), the FSS

expression (16) for the specific heat becomes

 CL�0� �
XM
j�1

cos�2�j�L��

j� 1=2

�
ln
�
j� 1=2

Ld

��
�2��̂�q̂�=�

: (18)

For sufficiently large L and close to the transition point,
�j�L� ’ � and the cosine term in (18) become a nonzero
constant provided � � �=4. This is the case in the square-
lattice pure Ising model in d � 2 dimensions, where � �
�=2 [6]. Simple invariance symmetries (such as self-
duality or duality combined with the star-triangle relation)
which the distribution of Fisher zeros must respect ensure
that this is also the case with the pure model on other
lattices [27] as well as for the symmetric random-bond
counterpart [28]. On continuity grounds, one also expects
� � �=4 in the general random-bond and random-site
Ising models in two dimensions.

In these cases, from the Euler-Maclaurin formula, the
leading scaling behavior for large L when � � 0 is
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 CL�0� �
�
�lnL�1�2��̂�q̂�=� if 2��̂� q̂� � �
ln lnL if 2��̂� q̂� � �:

(19)

In the thermodyamic limit, jtj and C1�t� replace L and
CL�0� in (19), respectively. Comparing (11) with (19) and
using (6), one finds

 �̂ � 1� dq̂� d�̂: (20)

This formula replaces (8) in such circumstances where the
model has � � 0 and � � �=4. In the pure Ising model in
d � 2 dimensions, where q̂ � �̂ � 0, (20) gives, correctly,
�̂ � 1 and the divergence of the specific heat there is
caused by the extra logarithm as compared with (8) (see
also Refs. [4–6]). In the random d � 2 Ising model where
q̂ � 0, �̂ � 1=2, it gives �̂ � 0. In general, if 2��̂� q̂� �
�, the specific heat instead diverges with a double loga-
rithm after (19). This is precisely the circumstance in the
random Ising model in two dimensions [11,12].

The N-color Ashkin-Teller model also has � � 0 and
is self-dual [29] with �̂ � �N=�N � 2� and �̂ �
�N � 1�=�N � 2� [11]. If q̂ � 0, these values also support
the new scaling relation (20).

The O�N� symmetric �4 theories (with short- or long-
range interactions) at their upper critical dimension also
have � � 0. There, however, � � �=4 [22,23,25] so that
(20) does not follow from (18). Instead, (8) remains valid
there as demonstrated in Ref. [1].

We now turn our attention to the correlation function (4)
and a new scaling relation for �̂, analogous to (7). Firstly,
fixing the argument of the function D in (4),

 G 1�x; t� � �1�t�
��d�2����ln�1�t��

�̂D
�

x
�1�t�

�
: (21)

Following Ref. [3] for example, and writing the singular
part of the magnetic susceptibility as

 �1�t� �
Z �1�t�

0
ddxG1�x; t�; (22)

one obtains

 �1�t� � �1�t�2���ln�1�t���̂: (23)

From (1) and (3), the leading scaling recovers (7).
Matching the logarithmic corrections yields

 �̂ � �̂� �̂�2� ��: (24)

This approach, obtaining the susceptibility from the corre-
lation function, comes from the original one used by Fisher
[7] and has also been used in Ref. [30] for the d � 2 four-
state Potts model. In fact, there � � 1=4, �̂ � 3=4, �̂ �
1=2, �̂ � �1=8, [30,31] and (24) holds.

For average quantities in the random Ising models in
d � 2 dimensions, � � 1=4, �̂ � 7=8, �̂ � 1=2, and �̂ �
0 [11] and (24) is again obeyed. This value for �̂ has been
convincingly verified numerically [13,17,20,32,33]. The
new relation (24) also holds in the N-color Ashkin-Teller

model, which, along with � � 1=4, �̂ � 7�N � 1�=4�N �
2�, and �̂ � �N � 1�=�N � 2�, has �̂ � 0 [11].

The O�N� symmetric �4 theories at their upper critical
dimension d � dc � 4 have � � 0, �̂ � �N � 2�=�N �
8�, �̂ � �N � 2�=2�N � 8�, and �̂ � 0 [34], and the ex-
pression (24) is obeyed. Likewise, O�N� spin models with
long-range interactions decaying as x��d�	� have logarith-
mic corrections at d � dc � 2	. There, � � 2� 	 [35],
�̂ � �N � 2�=�N � 8�, �̂ � �N � 2�=	�N � 8�, and the
relation (24) correctly yields �̂ � 0 [36].

For the percolation problem, � � 0, �̂ � 2=7, and �̂ �
5=42 at the upper critical dimension dc � 6 [37]. The
correction exponent for the correlation function there has
recently been calculated to be �̂ � 1=21 [38]. Again, this
set of values satisfies (24).

Finally, (24) can be used to predict the value of �̂ in
other models, such asm-component spin glasses and Yang-
Lee edge problems at their upper critical dimension dc �
6. For the former, � � 0 [39], �̂ � 2m=�2m� 1�, and �̂ �
5m=6�2m� 1� [40], giving �̂ � m=3�2m� 1�. For the
Yang-Lee problem, � � 0, �̂ � 2=3, and �̂ � 5=18 [40]
so that the prediction from (24) is �̂ � 1=9. These values
remain to be verified numerically.

It is observed in Ref. [30] that the magnetization m1�t�
for the four-state Potts model may be deduced from the
correlation function by an alternative argument; represent-
ing a generic spin-type variable by ~s�x�, if the spins de-
correlate in the limit where x! 1 such that G1�x; t� �
h~s�0� ~s�x�i ! h ~s�0�ih~s�x�i � m2

1�t� there, then using (1) and
(21) and matching with m1�t� � jtj
j lnjtjj
̂ [1] gives
��d� 2� �� � 2
 and �̂ � 2
̂� �̂�d� 2� ��. From
the standard scaling relations, the first of these again
recovers (7). (See also Ref. [41].) From the scaling rela-
tions for logarithmic corrections [1], the second yields �̂ �
dq̂� �̂� �̂�2� ��. When q̂ vanishes, this is identical to
(24). Indeed, this is the case in the d � 2, four-state Potts
model [1] as well as in the d � 2 pure and random Ising
models [1,9,32]. However, since q̂ � 0 at the upper critical
dimension of the O�N� �4 theories and their long-range
counterparts, the percolation problem, spin glasses, and the
Yang-Lee problem [1,40,42], this detailed matching of
G1�x; t� with m2

1�t� is invalid in these cases. Instead,
(24) holds in each case.

In conclusion, then, the scaling theory presented in
Ref. [1] has been extended to deal with the specific heat
when its leading exponent � vanishes and the Fisher zeros
impact onto the real axis at an angle other than �=4. In
such cases, (8) is replaced by (20). Also, the general theory
has been extended to deal with the correlation function and
the new relation (24) has been checked against the litera-
ture and predictions made. Together with Ref. [1], the new
formulae (20) and (24) offer a set of scaling relations
analogous to the standard ones and appropriate to logarith-
mic corrections.

Besides these general results, progress specific to the
random Ising models in two dimensions has been made.
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Through (20) and (24), the hitherto numerically most
elusive and controversial quantity �̂ has been directly
related to �, �̂, �̂, and q̂, all of which are clearly estab-
lished. Moreover, our theory automatically generates the
famous double logarithm in the specific heat in these
instances.
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