PRL 97, 155502 (2006)

PHYSICAL REVIEW LETTERS

week ending
13 OCTOBER 2006

Decorated, Tapered, and Highly Nonlinear Granular Chain

Robert Doney™

U.S. Army Research Laboratory, Aberdeen Proving Grounds, Maryland 21005, USA,
and Physics Department, State University of New York, Buffalo, New York 14260-1500, USA

Surajit Sen’

Physics Department, State University of New York, Buffalo, New York 14260-1500, USA
(Received 13 July 2006; published 11 October 2006)

It has been seen that inertial mismatches in 1D granular chains lead to remarkable energy absorption
which increases with the number of spheres, N, and tapering, g. Short chains, however, are limited in that
regard, and we therefore present one solution which greatly improves performance for any size chain.
These strongly nonlinear and scalable systems feature surprisingly complicated dynamics and are
inadequately represented by a hard-sphere approximation. Additionally, such systems have shock
absorption capacities that vary as a function of position along the chain. In this Letter, we present results
in the form of normalized kinetic energy diagrams to illustrate the impressive mitigation capability of both

original and improved tapered chains.
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We have reported on a seemingly simple, shock absorb-
ing, 1D dynamical system [1] consisting of an alignment of
elastic spheres of progressively smaller radii. We call this
system a simple (tapered) chain. This system defeats
shocks by spreading impulses out in time and space
through inertial mismatches between nearest neighbors
[2,3]. The effect has been recently validated experimen-
tally by Nakagawa et al. [4] and Melo and collaborators
[5]. However, these systems have limited energy dispersion
capability for small chains. Herein we report overcoming
this challenge by introducing smaller beads of constant
radius at each contact point. For convenience, that radius
is just some fractional size, f, of the smallest bead’s radius,
ry. These systems, now referred to as decorated (tapered)
chains, represent a tremendous improvement and are
strongly nonlinear. Consequently, a hard-sphere approxi-
mation is invalid even though it sufficiently describes a
simple chain. In addition, there is promising empirical
evidence to support our assertion regarding decorated
chains. This report briefly reviews key results of the simple
chain followed by the superior ability of the decorated
chain—both hard-sphere approximations and numerical
work will be presented.

Tapered chain systems represent an alternative to current
methods of dealing with undesirable transients, such as
ballistic shock, where metal foams and honeycombs are
being used [6,7]. When honeycombs are extruded, one
obtains a linear cellular alloy [8], which has demonstrated
improved energy absorption capabilities [9]. Another ap-
proach to dismiss transients is through the use of function-
ally graded materials [10] where one can introduce
impedance mismatches gradually or discontinuously.
What tapered chains offer as an improvement to currently
available technologies is an inherent scalability, the poten-
tial for improved performance, and reduced cost—after
all, bearings are inexpensive.
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Simple chains are parametrized by the number of
spheres, N, and amount of tapering, g,. We can quantify
their efficiency by measuring the normalized kinetic en-
ergy, Ky = Kour/ KN, where Kpy is the initial impulse
energy delivered by the first sphere and Kqyr is the kinetic
energy felt by the last sphere due to the first wave front
(reflections are neglected). A hard-sphere study of the
elastic collision between particles using energy and linear
momentum laws [2] indicate
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where the ratio of adjacent radii is defined as R;,{/R; =
(1 — g,) [see Figs. 1(b) and 1(c)]. We have added a sub-
script to g for reasons that will become clear below.

The spheres can be assumed to interact through the
strongly nonlinear Hertz potential [11,12], V(8;,4+1)=
5VRR 1 /(R + Ri+1)5%<2+1 = ai,i+15?ﬁ|’ where 6, ;11 =
R;+R;y, — (z;4+1 — z;) represents the overlap of successive
grains and z; is the absolute position of a grain. In addition,
the constant, D = % 1_—E"2), incorporates material properties
[13] of TigAl, V: the Young’s modulus, E = 114 kN/mm?,
and Poisson ratio, o = 0.33. In addition, for each chain, an
initial velocity of 0.01 mm/us (10 m/s) is applied to the
largest end. It is known that, among other constraints, the
Hertz potential is valid when impulse speeds are suffi-
ciently less than the sound speed of the material.
However, we have begun hydrocode simulations exploring
impact velocities up to 1 km/s, which suggest continued
energy absorption well beyond 10 m/s [14].

The equations of motion are then given as

832
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We will focus on the evaluation of Ky [Fig. 1(a)]. The
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(a) Hard spheres (top); Numerical (bottom)

FIG. 1 (color online).

(c) Tapered Chain: qs=0. 1, N=10
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(a) Hard-sphere approximation and numerically solved normalized kinetic energy surfaces, Ky = Kour/Kin

for the simple chain as functions of the number of spheres, N, and tapering, ¢,. Their difference is plotted in panel (d) with a reduced z

axis. Sample tapered chains are identified in panels (b) and (c).

numerical results presented here ignore energy losses, and
since all real systems will have several modes of energy
dissipation—friction, rolling, slipping, sound, etc.—this
surface represents the worst case. In these numerical stud-
ies we use the velocity-Verlet [15] algorithm with a time
step of 10 ps integrated over 10® steps. In addition, energy
is conserved to about one part in 102,

The reason for the difference between the approximation
and the numerical solution in Fig. 1(a) is, of course, due to
the potential. For hard spheres, the sequence consists of
independent collisions [16] where the velocity ratio is
v /v, =2/[1+ (1 — gq,)*]. Since the potential is infi-
nite, energy and momentum are transferred instantane-
ously. Further, the hard spheres are not confined and
momentum always carries them forward after interacting.
Numerically, rebounding occurs. Even if g, = 0—i.e.,
inertial matching—the natural partitioning of energy
seen numerically is not accounted for by the approxima-
tion. Thus, for hard spheres, all of the energy is kinetic as
compared to about 56.5% when the numerical-based analy-
sis is performed. These differences are plotted directly in
Fig. 1(d).

It is clear that the best energy absorption occurs for
highly tapered chains where there are a large number of
spheres. Unfortunately, large values of N may not be
realizable for many applications where space is at a pre-
mium. The natural scalability may be used to drive the
system to smaller sizes, but manufacturing issues may
become restrictive. And while precompressing the chain
can further increase the amount of absorption [17], that
condition needs to be externally maintained throughout the
dynamics. How does one then apply short tapered chains
where substantial energy mitigation is needed?

Larger and more frequent inertial mismatches lead to
better momentum traps and energy dispersion. We there-
fore propose an improved tapered chain design in which
we place interstitial grains at the particle contacts of a
simple chain. We refer to this as the decorated chain

[examples shown in detail later in Figs. 3(d)—3(i)]. The
latter is essentially a modified simple chain where we have
introduced interstitial grains of constant radius, fry, be-
tween every member of the simple chain, where 0 < f =
1.0 and ry is the radius of its smallest bead. The relation,
fry, was chosen for convenience in deriving a hard-sphere
approximation. From this point on, ¢ appears in both
simple and decorated chains but is defined differently. As
such, they are denoted as ¢, and g, respectively. We
constrain the decorated system to an odd number of parti-
cles such that the grains that formed the ends of the simple
chain are still the outer members. A hard-sphere derivation
for the decorated chain [18] is cumbersome and only key
points are presented here. The conservation equations for
mass and energy are carried out for several terms until a
pattern emerges. The velocity ratio is given by

(N-1)/2
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where A = f3&3V=D/2 ¢ = (1 — ¢,), and ¢, is now de-
fined as R; »,/R; = (1 — q,).
Turning to the mass ratios, we find that
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We can now identify the normalized kinetic energy by

squaring Eq. (3) and combining it with (4) to form
(N-1)/2 6D 2
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Ky = (4A€B/2)N-1

Figure 2 sketches this distribution.

It is difficult to draw any physical intuition from (5).
However, a very curious and astonishing result occurs in
the limit ¢; = 0. Under that condition, (5) reduces to
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FIG. 2 (color online).

f=0.7

20 0.1

20 0.1
qq N qq

Normalized Kinetic energy surfaces, Ky = Kour/Kn, for the decorated chain under the hard-sphere

approximation as functions of the number of spheres, N, fractional size of interstitial sphere, f, and tapering, g,.
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This limit is equivalent to Eq. (1) under the exchange f <
(1 —gq,). As a result, Ky decays as a half-Gaussian or
sigmoid with increasing f, and exponentially with increas-
ing N. Itis clear that f = 1 should imply g, = O since they
both generate monodisperse chains. That this equivalency
goes beyond that special case is quite unexpected. One can
now begin to see the incredible effect f has on the energy
mitigation capability when an infinite potential is invoked:
for f =0.3—a typical value we might consider—the

(b)f=0.7

(e)f=0.7;N= 13;qd=0

equivalent tapering in the simple chain would be ¢, =
0.7. This value is 7 times larger than any system we had
previously considered and could be a significant system
integration challenge. Visually, for hard spheres, the en-
ergy mitigation capability of the simple chain shown in
Fig. 1(c) (¢, = 0.1) is identical to that for a decorated
chain similar to that shown in Fig. 3(d) but with ¢, = 0,
N =10, f =0.9.

Figure 3 highlights the computational results for the
decorated chain. Figures 3(d)—3(i) demonstrate the wide
variety of systems possible given f, g, and N. It is
immediately clear that the inertial mismatch changes as a
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(g)f=1;N= 13;qd= 0.1

(h) f=0.7; N=13;q4= 0.1

(i) f=0.3; N = 13;q4= 0.1
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FIG. 3 (color online).

(a)—(c) Numerically produced normalized kinetic energy surfaces, Ky = Kqur/ K, for the decorated chain

as functions of the number of spheres, N, fractional size of interstitial sphere, f, and tapering, g,. Several sample chains are identified

in panels (d)—(1).
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function of position along the decorated chain—a dynamic
not present for the simple chain. It is possible then to have
decorated chains that appear monodisperse (g, = 0) for
only a subset of the chain. This is what we believe to be the
cause of a ripple in the surface of the K plots that
propagate toward the origin as f decreases. As one might
expect, such behavior would be functions of N, ¢ 4, and f.
The effect vanishes for f = 0.6, approximately. At about
this threshold, the interstitial grain is not much smaller
(less massive) than the grains toward the end of the chain.
The explanation is that as an impulse propagates, energy
transmission becomes increasingly efficient due to smaller
inertial mismatches—a prerequisite for admitting solitary
waves [19,20]. Thus the system changes from a shock
absorber to a shock transmitter. This effect, however,
must compete with compressive effects in some manner
since no such behavior is present for hard spheres even
though it too has a position-dependent inertial mismatch.

Simulations suggest that for f = 0.3, N =5, ¢, = 0.1,
one can disperse energy within the chain such that only
about 10% of that put into the system is transmitted to the
end with the initial pulse. At later times, the pulse is
converted into noise.

To conclude, granular alignments are rich, highly scal-
able, nonlinear dynamical systems that can be constructed
to act as shock absorbing systems. They can be tuned by
modifying the material properties and contact geometries,
producing fascinating and sometimes unexpected out-
comes. Both system types can be realized—and have
been corroborated experimentally. In point, an experimen-
tal study by Agui [21] at NASA—Glenn Research Center
on a decorated chain with ¢, = 0.05, f ~0.3, N=9
reveals that the force felt by the last grain is approximately
50% of that compared to a simple chain of similar length.

A hard-sphere approximation for the simple chain cor-
rectly describes the functionality of N and ¢, for the
normalized energy parameter space. The softness of the
potential is a factor but not a dominant one. The decorated
chain, much to our surprise however, cannot be described
by such an approximation because shock transmission
properties vary with position along the chain, and the
softness of the spheres—due to the Hertz potential —
strongly influence that behavior. This particular system,
consequently, cannot be treated by an independent colli-
sion model. As a note of academic interest and in consid-
ering hard spheres, the limit of g, = 0 for the decorated
chain surprisingly reduces to that for the simple chain
under the exchange, f < (1 — ¢,). This says that a hard-
sphere chain consisting of an alternating series of radii

(where rgnan = fTiaree) has the kinetic energy absorption
equivalency of a simple chain of tapering g;.
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