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We investigate the interaction between two beams differing in wavelength and the properties of dual-
frequency spatial solitons in nonlocal birefringent reorientational media. We report the first experimental
observations of anisotropic nonlocal vector solitons in unbiased nematic liquid crystals. Model and
simulations, based on the paraxiality along the Poynting vectors, include joint walk-off and breathing.
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Spatial optical solitons have been widely investigated,
mainly because of their potentials in all-optical informa-
tion processing [1–3]. Spatial solitons in 2� 1 dimensions
have been studied in several materials, from photorefrac-
tives [4,5] to ��2� crystals [6,7], from liquids [8] to liquid
crystals [9,10]. Recently, anisotropic spatial solitons and
their angular walk-off and steering have been observed in
specifically designed liquid crystalline cells [11].

The simplest vector solitons (VS) are known as shape-
preserving, self-localized solutions of coupled nonlinear
evolution equations [1]. Among them, Manakov spatial
solitons [12] can be derived by the inverse scattering
technique and were first observed in AlGaAs with orthog-
onally polarized collinear beams interacting incoherently
[13]. Two-wavelength vector solitons in Kerr media were
predicted by De La Fuente and coworkers [14], whereas
VS consisting of bright and dark solitons were reported by
Shalaby and Barthelemy [15]. Quadratic solitons belong to
the class of VS because they encompass the parametric
interaction of waves at different wavelengths [6,7,16]. The
resulting self-guided beams, in general, have energy flows
along directions depending on relative powers and bire-
fringence [7]. In photorefractives, VS were demonstrated
in various forms, ranging from incoherent VS [17] to VS
with bright and dark solitary components [18], soliton
dipoles [19] and multimode solitons [17,20]. The rich VS
phenomenology is grasped by the term molecule soliton
[21].

In this Letter, we investigate for the first time a novel
class of VS, namely, two-color spatial solitons in a highly
nonlocal and anisotropic Kerr-like medium. While each
color component experiences a different degree of bire-
fringence and walk-off because of dispersion, the gener-
ated nonlocal vector soliton is a self-localized wave with a
single Poynting vector and a complex breathing behavior.
We carry out the analysis at the two frequencies adopting
the paraxial approximation, i.e., modeling wave propaga-
tion along each Poynting vector [11,22] and assuming an
incoherent mutual interaction owing to nonlocality in both

time and space. In order to address the most general case of
an optically tunable anisotropy, we consider the additional
effect of (nonlinear) self-focusing on (linear) walk-off and
refer to a reorientational response, such as in nematic
liquid crystals (NLC). We verify our main findings in the
limit of single walk-off using NLC in a highly nonlocal
configuration.

We consider the cell geometry sketched in Fig. 1, with
optic axis n̂ in the plane yz at an angle � with respect to z.
Two Gaussian beams of distinct wavelengths (namely �1

and �2), polarized as extraordinary waves, are launched in
z � 0 with wave vectors kj (j � 1; 2) in the plane yz. Each
(individual) beam would normally undergo walk-off at an
angle � � arctan�"a sin�2#�=�"a � "a cos�2#� � 2"?��,
with # the angle between kj and the molecular director
n̂; "? and "k the relative dielectric constants perpendicular
and parallel to the optic axis, respectively; and "a � "k �
"? the optical anisotropy. The dielectric tensor ��" elements
can be expressed as "ij � "?�ij � "a�î � n̂��ĵ � n̂�, with �ij
the Kronecker delta and î; ĵ spanning the axes versors.
Since all material constants are � dependent, � differs at
the two wavelengths. To avoid additional walk-off along x,

FIG. 1. (a) Schematic top view of the cell. Small arrows
illustrate the director distribution in the absence of external
perturbation (voltage and/or light). The large arrows represent
the input wave vectors. (b) Sketch of propagation vectors kj with
respect to the optic axis n̂. Rotated reference frames xt1s1 and
xt2s2 are indicated, as well.
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we look at the case with no external bias [11]; hence the
equation governing the reorientation # for electric fields in
the principal plane yz is
 

Kr2#j �
"0"a1

4
jA1j

2 sin�2�#1 � �1��

�
"0"a2

4
jA2j

2 sin�2�#2 � �2�� � 0; (1)

with the subscript j referring to the two wavelengths �j
(j � 1; 2), "aj the anisotropies, Aj the field envelopes,
r2#1 � r

2#2 for any set of propagation vectors kj, #j
the angle between the optic axis n̂ and kj, and K the elastic
constant (single constant approximation [23]). The latter
quantifies the elastic response which, in conjunction with
the boundary conditions, rules nonlocality in space. In
Eq. (1), mixing terms which involve both fields were
neglected due to nonlocality in time, i.e., because of the
incoherent nature of the interaction [24].

After rotating the initial xyz reference system by an
angle �j around the x axis, the evolution equations in the
new coordinate systems xjtjsj are
 

2ik0jnej cos�j
@Aj
@sj
�Dtj

@2Aj
@t2j
�Dxj

@2Aj
@x2

j

� k2
0j�"ttjAj � 0 �j � 1; 2�; (2)

with Dxj and Dtj the diffraction coefficients along xj and
tj, respectively; k0j � 2�=�j; nej�#0j� the unperturbed
extraordinary (e-)wave indices (in the absence of optical
reorientation) being #0j the values of #j in the linear
limit; �"ttj the all-optical perturbation induced on the t̂ t̂
element of the dielectric tensor ��"j, i.e., �"ttj �
"aj�sin2�#j � �j� � sin2�#0j � �j�� [see Fig. 1(b)]. Note-
worthy, at this order of approximation, the fields are line-
arly polarized along tj, consistently with the hypothesis
used in deriving Eq. (1). Since each �"ttj depends non-
locally on field intensities through Eq. (1), Eq. (2) is an
incoherently coupled nonlocal equation encompassing a
Kerr-like nonlinearity.

Let us now consider collinear beams with propagation
vectors parallel to ẑ, hence #1 � #2 � #. Based on walk-
off (we take �2 > �1) and mutual attraction [24], we expect
the corresponding trajectories to oscillate in propagation,
with a mean angular direction depending on the relative
power balance. We set # � #0 ��, with �	 #0 the
optically induced perturbation [10]. Defining � � ��2 �
�1�=2 and rewriting Eq. (1) in the frame xts obtained by
rotating xyz of an angle �1 � � around x, linearizing the
equation about #0 and assuming radial symmetry as well as
negligible second order derivatives along s, the perturba-
tion can be expressed as
 

� � �0 ���1�2 fx
2 � �t� �t1�s��

2g

���2�2 fx
2 � �t� �t2�s��2g; (3)

where �0 is the maximum perturbation and ��j�2 �

��"0"aj=16K�jAjj
2
x�0;t�0 sin�2�#0 � �j�� (j � 1; 2). �tj�s�

is the average trajectory of the jth beam in the plane st,
i.e., �tj�s� �

RR
jAj�x; t; s�j

2tdxdt. By linearizing Eq. (2)
around #0 and using Eq. (3), we obtain
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j

� k2
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with Dxj � Dtj � Dj due to radial symmetry. Letting @ �

1, mj � �k0jnej cos�j�=Dj, Vjeq � ��j�, and �j �
fk2

0j"aj sin�2�#0 � �j��g=�2mjDj�, it is straightforward to

recognize that (4) are of the form i@@Aj=@sj �
�@2=2m�r2Aj � V

j
eq � 0, i.e., Schrödinger equations able

to support stable spatial solitons [11,25]. In the limit of
self-confinement, i.e., with ��j�2 independent from s, after
applying the Ehrenfest’s theorem, the average beam tra-
jectories in the frame x1t1s1 are (with no variations in x, as
expected) as follows:
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�
�

1
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m2

2�2��1�2

�
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where we defined � � �2�m1�2��1�2 �m2�1��2�2 �=
�m1m2�. Therefore, the two wavelength components oscil-
late around a straight line lying in the plane yz at an angle
� with z, being

 � � arctan
�

tan�2��
�
1�

m1�2��1�2

m1�2��1�2 �m2�1��2�2

��
� �1;

(5)
i.e., when the combined excitations induce self-
confinement, the VS has energy flow along a direction
established by the (two) power components according to
Eq. (5).

Having ascertained that a VS is indeed a self-localized
solution with a well-defined, power-dependent walk-off, it
is even more intriguing to focus on the breathing features
of this VS by introducing an input wave front tilt on the
second beam, in order to make ŝ1 and ŝ2 parallel to one
another and rewrite Eq. (2) in a common reference. Since
the electric fields are parallel, their angle with the optic
axis n̂ is the same, i.e., #1 � �1 � #2 � �2, with two
distinct #0, namely #01 � � and #02. Therefore, we
have to deal with the partial differential equations system
consisting of Eq. (1) (with @2=@s2 � 0) and Eq. (4), with
Eq. (3) and �t1�s� � �t2�s� � 0 (the Poynting vectors are
collinear and no mutual attraction takes place). The
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coupled Schrödinger equations [Eq. (4)]—with parabolic
potentials nonlinearly depending on the beam ampli-
tudes—describe an induced waveguide with index distri-
bution longitudinally varying through cross-phase
modulation (XPM): consequently, eigenmodes and eigen-
values change continuously with s, originating different
breathing at the two wavelengths and, in general, a non-
periodic propagating behavior for the nonlocal VS.

In the experiments, we employed an NLC cell with two
parallel glass slides, their interfaces polymer coated and
rubbed at �=6 with respect to z. The cell thickness was
100 	m and contained the nematic liquid crystal E7.
Consequently, in the absence of any perturbation, the
NLC director was homogeneously aligned in yz at �=6
with respect to z. An input interface parallel to plane xy
(see Fig. 1) prevented lenslike effects and depolarization of
the input waves. We injected two extraordinarily polarized
Gaussian beams of wavelengths of 632.8 (red) and
1064 nm (NIR), respectively, and acquired images of their
intensity distributions in the plane yz by means of a CCD
camera and a microscope, collecting the light scattered out
of the plane. We monitored light evolution at both wave-
lengths, but in order to prevent chromatic effects, we
filtered and reproduced only images of the visible compo-
nent at 632.8 nm. The optics were arranged as to launch
both beams with Rayleigh lengths equal to 60 	m, i.e.,
input waists of 2.8 and 3:7 	m for red and NIR, respec-
tively. By adjusting the input phase-front tilt of the red, we
carried out experiments with collinear Poynting vectors
along z. We firstly investigated their linear behavior, i.e.,
when each beam diffracted either in the absence of the
second one or in the presence of negligible XPM, then we
launched both components to exploit XPM and generate a
VS. We reproduced the photographs [Fig. 2] after color
(gray) coding and a rotation by � in order to correct for the
walk-off, i.e., to show light propagation versus s rather than
z. Figure 2(a) is the ts evolution of a low-power (0.1 mW)
red beam colaunched with a 1.2 mW NIR beam; the latter
is unable to self-localize and both components diffract.
Similarly, Fig. 2(b) displays a 0.4 mW red beam propagat-
ing and diffracting in the absence of NIR. When 1.2 mW
NIR and 0.4 mW red beams are collinearly injected to-
gether as in Fig. 2(c), the nonlinear response is enhanced
through incoherent XPM and supports a self-localized
wave, i.e., a two-color vector soliton. To compare our
data with numerical simulations, we set � � �=6, as-
sumed the propagation vector k2 (red beam) to be tilted
in the plane yz to make ŝ1 and ŝ2 collinear, and used a
standard split-step approach with a Crank-Nicolson
scheme to solve the propagation equations. We took K �
12
 10�12N and the material parameters of E7 [26]. The
white contour lines in Fig. 2 display the simulated behav-
ior. Consistently with the actual experimental limitations
(the use of a nonachromatic lens, wavelength dependent
Fresnel reflections and scattering, the presence of a non-
homogeneous NLC transition layer in 0 � z < 100 	m),
we included a phase-front curvature for the input beams

and distinct effective incoupling factors at the two
wavelengths.

To pursue a systematic study of these multicomponent
beams, we varied both red and NIR input powers PR and
PNIR, respectively, while keeping the launch conditions
(Rayleigh lengths, tilt, polarization) fixed. Figures 3(a),
3(c), and 3(e) show the yz evolution of a red beam of fixed
power as the NIR excitation is increased; clearly, the red
becomes more and more confined versus PNIR, as expected

FIG. 2 (color online). Acquired intensity profiles for red light
in the plane ts (i.e., after a rotation by �). Contour maps of the
calculated intensity distributions are superimposed (white lines)
to the experimental data. (a) A weak 0.1 mW red beam is
colaunched with a 1.2 mW NIR beam; (b) a 0.4 mW red beam
is injected in the absence of NIR; (c) 0.4 mW red and 1.2 mW
NIR beams are colaunched and generate a vector soliton. In the
simulations, we took effective input coupling efficiency of 40%
and 50% for red and NIR and initial beam curvatures of radius
�130 	m (waist in z � �40 	m), respectively.

FIG. 3 (color online). Left: acquired intensities profiles at
632.8 nm in the plane yz. Intensity levels are normalized to
scattering. Right: corresponding computed intensities in the
plane st. Input power PR at 632.8 nm is 1.6 mW, while NIR
powers are PNIR � 0 (a),(b), 0.7 (c),(d), and 2.4 mW (e),(f),
respectively. Incoupling parameters are as in Fig. 2.
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on the basis of XPM [Eq. (1)]. A similar behavior is
verified for the NIR and, as predicted, both components
propagate along the same Poynting direction s. Once
again, measured and calculated data [in the plane ts,
Figs. 3(b), 3(d), and 3(f)] are in excellent agreement.

Finally, Figs. 4(a)– 4(d) show color-coded maps of the
measured peak intensity (normalized to scattering losses)
of the red component versus s (horizontal axis) and total
excitation PR � PNIR (vertical axis) for a fixed input power
PR at 632.8 nm. It is apparent that the characteristic breath-
ing [10] of the nonlocal vector soliton is nonperiodic and
changes with total excitation, being more sensitive to the
red component (i.e., a similar behavior occurs at lower total
powers if PR is higher). This is primarily due to the larger
anisotropy at 632.8 nm, i.e., a greater amount of energy
coupled with the medium through reorientation [see
Eq. (1)], and a deeper refractive well for a given director
distribution [Eq. (2)]. The simulations, plotted in Fig. 4(e)–
4(h) for the peak intensity after integration across the
thickness x and normalization to the input power at
632.8 nm, display the same trend: for a fixed total power
P, a larger PR makes the soliton more confined and accel-
erates the breathing oscillations versus s, in good agree-

ment with the experimental results. The departure between
acquired (a through d) and calculated maps (e through h) in
Fig. 4 can be ascribed to scattering losses as well as beam
aberrations due to the distorted director distribution at the
input interface, both effects neglected in the simulations.

In conclusion, we have demonstrated for the first time
anisotropic vector solitons in nonlocal birefringent media
exhibiting a reorientational nonlinearity. Two extraordinar-
ily polarized beams of different wavelengths—hence
walk-off—can nonlinearly couple in an incoherent fashion
and combine into a vector soliton with a given Poynting
vector and an aperiodic breathing determined by disper-
sion, birefringence, and relative excitations.
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FIG. 4 (color online). Red peak intensity IR�s� in the observa-
tion plane st (right axes) versus s and total excitation PR � PNIR

(left axes) for a fixed PR. (a)–(d): measured data; (e)–(h):
calculated data (after integration along x) assuming coupling
parameters as in Fig. 2. PR is 0.1 (a),(e), 0.4 (b),(f), 1.0 (c),(g),
and 1.6 mW (d),(h), respectively. All data are normalized to the
value in s � 0.
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