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Substantial collective flow is observed in collisions between large nuclei at BNL RHIC (Relativistic
Heavy Ion Collider) as evidenced by single-particle transverse momentum distributions and by azimuthal
correlations among the produced particles. The data are well reproduced by perfect fluid dynamics. A
calculation of the dimensionless ratio of shear viscosity � to entropy density s by Kovtun, Son, and
Starinets within anti-de Sitter space/conformal field theory yields �=s � @=4�kB, which has been
conjectured to be a lower bound for any physical system. Motivated by these results, we show that the
transition from hadrons to quarks and gluons has behavior similar to helium, nitrogen, and water at and
near their phase transitions in the ratio �=s. We suggest that experimental measurements can pinpoint the
location of this transition or rapid crossover in QCD.
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One of the amazing experimental discoveries of mea-
surements on gold-gold collisions at the RHIC (Relativistic
Heavy Ion Collider) at Brookhaven National Laboratory is
the surprising amount of collective flow exhibited by the
outgoing hadrons. Collective flow is evidenced in both the
single-particle transverse momentum distribution [1], com-
monly referred to as radial flow, and in the asymmetric
azimuthal distribution around the beam axis [2], quantified
by the functions v1�y; pT�, v2�y; pT�, . . . in the expansion
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where y is the rapidity and pT is the transverse momentum.
The function v2�y � 0; pT�, in particular, was expected to
be much smaller at RHIC than it is at the lower energies of
the SPS (Super Proton Synchrotron) at CERN [3], but in
fact it is about twice as large. Various theoretical calcula-
tions [4] support the notion that collective flow is mostly
generated early in the nucleus-nucleus collision, and is
present at the partonic level before partons coalesce or
fragment into hadrons. Theoretical calculations including
only two-body interactions between partons cannot gener-
ate sufficient flow to explain the observations unless par-
tonic cross sections are artificially enhanced by more than
an order of magnitude over perturbative QCD predictions
[5]. This has emphasized that the quark-gluon matter cre-
ated in these collisions is strongly interacting, unlike the
type of weakly interacting quark-gluon plasma expected to
occur at very high temperatures on the basis of asymptotic
freedom [6]. On the other hand, lattice QCD calculations
yield an equation of state that differs from an ideal gas only
by about 10% once the temperature exceeds 1:5Tc, where
Tc � 175 MeV is the critical or crossover temperature

from quarks and gluons to hadrons [7]. Furthermore, per-
fect fluid dynamics (with zero shear and bulk viscosities)
reproduces the measurements of radial flow and v2 very
well up to transverse momenta of order 1:5 GeV=c [8].

An amazing theoretical discovery was made by Kovtun,
Son, and Starinets [9], who showed that certain special
field theories, special in the sense that they are dual to
black branes in higher space-time dimensions, have the
ratio �=s � 1=4� (we use units with @ � kB � c � 1)
where � is the shear viscosity and s is the entropy density.
They conjectured that all substances have this value as a
lower limit, and gave as examples helium, nitrogen, and
water at pressures of 0.1, 10, and 100 MPa, respectively.
Interesting enough, this bound is also obeyed by N � 4
supersymmetric SU�Nc� Yang-Mills theory in the large Nc
limit [10].

We are motivated by these discoveries to study what
happens in QCD at finite temperature. The relatively good
agreement between perfect fluid calculations and experi-
mental data for hadrons of low to medium transverse
momentum at RHIC suggests that the viscosity is small,
however, it cannot be zero. Indeed, the calculations within
anti-de Sitter space/conformal field theory suggest that
� 	 s=�4��. Our conclusion will be that sufficiently pre-
cise calculations and measurements should allow for a
determination of the ratio �=s as a function of temperature,
and that this ratio can pinpoint the location of the phase
transition or rapid crossover from hadronic to quark and
gluon matter. This is a different method than trying to infer
the equation of state of QCD in the form of pressure P as a
function of temperature T or energy density �.

The energy-momentum tensor density for a perfect fluid
(which does not imply that the matter is noninteracting) is
T�� � 
Pg�� � wu�u�. Here w � P� � � Ts is the
local enthalpy density and u� is the local flow velocity.
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Corrections to this expression are proportional to first
derivatives of the local quantities whose coefficients are
the shear viscosity � and bulk viscosity � . (Thermal con-
ductivity is neither relevant nor defined when all net con-
served charges, such as electric charge and baryon number,
are zero). Explicit expressions may be found in textbooks
[11]. Perfect fluid dynamics applies when the viscosities
are small, or when the gradients are small, or both. The
dispersion relations for the transverse and longitudinal
(pressure) parts of the momentum density are

 !� iDtk2 � 0; !2 
 v2k2 � iDl!k2 � 0; (2)

whereDt � �=w andDl � �
4
3�� ��=w are diffusion con-

stants with the dimension of length and v is the speed of
sound. Since w � Ts, and since usually the bulk viscosity
is small compared to the shear viscosity, the dimensionless
ratio of (shear) viscosity to entropy (disorder) �=s is a
good way to characterize the intrinsic ability of a substance
to relax towards equilibrium independent of the actual
physical conditions (gradients of pressure, energy density,
etc.). It is also a good way to compare very different
substances.

In Figs. 1–3 we plot the ratio �=s versus temperature at
three fixed pressures, one of them being the critical pres-
sure (meaning that the curve passes through the critical
point) and the other ones being larger and smaller, for
helium, nitrogen, and water. The ratio was constructed
with data obtained from the National Institute of
Standards and Technology (NIST) [12]. (Care must be
taken to absolutely normalize the entropy to zero at zero
temperature; we did that using data from CODATA [13]).
The important observation [14,15] is that �=s has a mini-
mum at the critical point where there is a cusp. At pressures
below the critical pressure there is a discontinuity in �=s,
and at pressures above it there is a broad smooth minimum.

The simplest way to understand the general behavior was
presented by Enskog, as explained in [16]. Shear viscosity
represents the ability to transport momentum. In classical
transport theory of gases �=s� Tlfree �v, where lfree is the
mean free path and �v is the mean speed. For a dilute gas the
mean free path is large, lfree � 1=n�, with n the particle
number density and� the cross section. Hence it is easy for
a particle to carry momentum over great distances, leading
to a large viscosity. (This is the usual paradox, that a nearly
ideal classical gas has a divergent viscosity). In a liquid
there are strong correlations between neighboring atoms or
molecules. A liquid is homogeneous on a mesoscopic
scale, but on a microscopic scale it is a mixture of clusters
and voids. The action of pushing on one atom is translated
to the next one and so on until a whole row of atoms moves
to fill a void, thereby transporting momentum over a rela-
tively large distance and producing a large viscosity.
Reducing the temperature at fixed pressure reduces the
density of voids, thereby increasing the viscosity. The
viscosity, normalized to the entropy, is observed to be the
smallest at or near the critical temperature, corresponding
to the most difficult condition to transport momentum. This
is an empirical observation. The mean free path must lie
somewhere between the dilute gas limit, 1=n�, and the
close-packing limit, 1=n1=3. For a massless gas of N bo-
sonic degrees of freedom, with entropy density s �
N�4�2=90�T3, the close-packed limit gives �=s � 2=N1=3.

How does this relate to hadrons and quark-gluon
plasma? In the low energy chiral limit for pions the cross
section is proportional to ŝ=f4

�, where ŝ is the usual
Mandelstam variable for invariant mass-squared and f�
is the pion decay constant. The thermally averaged cross
section is h�i / T2=f4

�, which leads to �=s / �f�=T�
4.

FIG. 1. The ratio �=s as a function of T for helium with s
normalized such that s�T � 0� � 0. The curves correspond to
fixed pressures, one of them being the critical pressure, and the
others being greater (1 MPa) and the other smaller (0.1 MPa).
Below the critical pressure there is a jump in the ratio, and above
the critical pressure there is only a broad minimum. They were
constructed using data from NIST and CODATA.

FIG. 2. The ratio �=s as a function of T for nitrogen with s
normalized such that s�T � 0� � 0. The curves correspond to
fixed pressures, one of them being the critical pressure, and the
others being greater (10 MPa) and the other smaller (0.1 MPa).
Below the critical pressure there is a jump in the ratio, and above
the critical pressure there is only a broad minimum. They were
constructed using data from NIST and CODATA. The curves are
plotted on logarithmic scale to make the behavior around the
critical point more visible.
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Explicit calculation gives [17]

 

�
s
�

15

16�
f4
�

T4 : (3)

Thus the ratio �=s diverges as T ! 0. At the other extreme
lies quark-gluon plasma. The parton cross section behaves
as � / g4=ŝ. A first estimate yields �=s / 1=g4.
Asymptotic freedom at one loop order gives g2 /
1= ln�T=�T�, where �T is proportional to the scale pa-
rameter �QCD of QCD. Therefore �=s is an increasing
function of T in the quark-gluon phase. As a consequence,
�=s must have a minimum. Based on atomic and molecu-
lar data, this minimum should lie at the critical temperature
if there is one, otherwise at or near the rapid crossover
temperature.

The most accurate and detailed calculation of the vis-
cosity in the low temperature hadron phase was performed
in [17]. The two-body interactions used went beyond the
chiral approximation, and included intermediate reso-
nances such as the 	 meson. The results are displayed in
Fig. 4, both two flavors (no kaons) and three flavors (with
kaons). The qualitative behavior is the same as in Eq. (3).
The most accurate and detailed calculation of the viscosity
in the high temperature quark-gluon phase was performed
in [18]. They used perturbative QCD to calculate the full
leading-order expression, including summation of the
Coulomb logarithms. For three flavors of massless quarks
the result is

 

�
s
�

5:12

g4 ln�2:42=g�
: (4)

We used this together with the two-loop renormalization
group expression for the running coupling
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with �T � 30 MeV, which approximately corresponds to
using an energy scale of 2�T and �MS � 200 MeV. The
result is also plotted in Fig. 4. These results imply a
minimum in the neighborhood of the expected value of
Tc � 190 MeV. Whether there is a discontinuity or a
smooth crossover cannot be decided since both calcula-
tions are unreliable near Tc.

It is interesting to ask what happens in the large Nc limit
with g2Nc held fixed [19]. In this limit, meson masses do
not change very much but baryon masses scale propor-
tional to Nc; therefore, baryons may be neglected in com-
parison to mesons due to the Boltzmann factor. Since the
meson spectrum is essentially unchanged with increasing
Nc, so is the Hagedorn temperature. The critical tempera-
ture to go from hadrons to quarks and gluons is very close
to the Hagedorn temperature, so that Tc is not expected to
change very much either. In the large Nc limit the meson-
meson cross section scales as 1=N2

c . According to our
earlier discussion on the classical theory of gases, this
implies that the ratio �=s in the hadronic phase scales as
N2
c . This general result is obeyed by (3) since it is known

that f2
� scales as Nc. The large Nc limit of the viscosity in

the quark and gluon phase may be inferred from the
calculations of [18] to be

 

�
�
s

�
QGP
�

�
1� 3:974r
1� 1:75r

�
69:2

�g2Nc�
2 ln�26=�g2Nc�1� 0:5r���

(6)

where r � Nf=Nc. Thus the ratio �=s has a finite large Nc
limit in the quark and gluon phase. Therefore, we conclude
that �=s has a discontinuity proportional to N2

c if Nc ! 1.
This jump is in the opposite direction to that in Fig. 4.

So far the only quantitative results for viscosity in lattice
gauge theory have been reported by Nakamura and Sakai
[20] for pure SU(3) without quarks. This bold effort ob-
tained �=s � 1=2 in the temperature range 1:6< T=Tc <
2:2, albeit with uncertainties of order 100%. Gelman,

FIG. 4. The ratio �=s for the low temperature hadronic phase
and for the high temperature quark-gluon phase. Neither calcu-
lation is very reliable in the vicinity of the critical or rapid
crossover temperature.

FIG. 3. The ratio �=s as a function of T for water with s
normalized such that s�T � 0� � 0. The curves correspond to
fixed pressures, one of them being the critical pressure, and the
others being greater (100 MPa) and the other smaller (10 MPa).
Below the critical pressure there is a jump in the ratio, and above
the critical pressure there is only a broad minimum. They were
constructed using data from NIST and CODATA.
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Shuryak, and Zahed [21] have modeled the dynamics of
long wavelength modes of QCD at temperatures from Tc to
1:5Tc as a classical, nonrelativistic gas of massive quasi-
particles with color charges. They obtained a ratio of
�=s � 0:34 in this temperature range.

It ought be possible to extract numerical values of the
viscosity in heavy ion collisions via scaling violations to
perfect fluid flow predictions. One should perform a sys-
tematic beam energy and projectile or target mass scan
from SPS energies to the top RHIC energy, and then on to
the LHC. Flow data, in the form of the functions v1, v2, . . .
should be obtained and compared with the results of cal-
culations based on relativistic viscous fluid dynamics. This
program is analogous to what was accomplished at lower
energies of 30 to 1000 MeV per nucleon beam energies in
the lab frame. At those energies, scaling violations to
perfect fluid dynamics were indeed observed [22]. It was
possible to infer the compressibility of nuclear matter and
the momentum dependence of the nuclear optical potential
via the transverse momentum distribution relative to the
reaction plane [23] and via the balance between attractive
and repulsive scattering [24]. There is much to be learned
about QCD at high energy densities.
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