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We show that, as a result of nonlinear self-interactions, scalar field theories that couple to matter much
more strongly than gravity are not only viable but could well be detected by a number of future
experiments provided that they are properly designed to do so.
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There is widespread interest in the possibility that, in
addition to the matter described by the standard model of
particle physics, our Universe may be populated by one or
more scalar fields. These are a general feature in high
energy physics beyond the standard model and are often
related to the presence of extra dimensions. The existence
of scalar fields has also been postulated as a means to
explain the early and late time acceleration of the
Universe. It is almost always the case that such fields
interact with matter: either due to a direct Lagrangian
coupling or indirectly through a coupling to the Ricci
scalar or as the result of quantum loop corrections. If the
scalar field self-interactions are negligible, then the experi-
mental bounds on such a field are very strong: requiring it
to either couple to matter much more weakly than gravity
does or to be very heavy [1]. Recently, a novel scenario was
presented by Khoury and Weltman [2] that employed self-
interactions of the scalar field to avoid the most restrictive
of the current bounds. They dubbed such scalars to be
‘‘chameleon fields’’ due to the way in which the field’s
mass depends on the density of matter in the local environ-
ment. A chameleon field might be very heavy in relatively
high density environments, such as the Earth and its atmo-
sphere, but almost massless cosmologically where the
density is some 10�30 times lower. This feature allows
the field to evade local constraints on fifth force effects
and is deemed the chameleon mechanism.

Chameleon field theories involve nonlinear self-
interactions, which makes finding analytical solutions dif-
ficult, particularly in highly inhomogeneous environments.
Most commentators invariably, therefore, linearize the
chameleon theories when studying their behavior in such
backgrounds [2,3]. In this Letter, we show that this linea-
rization procedure is often invalid. When properly ac-
counted for, the nonlinearities increase the strength of the
chameleon mechanism: further hiding the field from
present day constraints, particularly those on possible vio-
lations of the weak equivalence principle (WEP). Our
results not only reveal interesting behavior at the level of
field theory but that today’s experimental bounds on the
parameters of these theories could be much weaker than

previously realized. Furthermore, they imply that experi-
ments which probe possible violations of the WEP should
be redesigned if they are to have a chance of detecting
chameleon fields.

We consider theories where the chameleon field � has a
self-interaction potential given by:

 V��� � �M4�M=��n;

where M has units of mass, n is some integer, and � is a
parameter. We set c � @ � 1 and define G � M�2

pl .
Theories with n > 0 were first consider in this context in
Ref. [2], while a �4 theory was initially noted to have
chameleonlike behavior in Ref. [4]. When n � �4, we
can, by rescaling M, set � � 1, whereas when n � �4,
the mass scale M does not appear in V. As argued in
Ref. [4], � � 1=4! would be a ‘‘natural’’ value when n �
�4. If M� �0:1 mm��1, the chameleon may play the role
of dark energy [3].

We parametrize the matter coupling of the chameleon by
a function �B;����=Mpl��=Mpl. Astrophysical con-
straints require that j��=Mplj & 0:1 since nucleosynthesis
[3]. Preempting this requirement, we simplify our calcu-
lations by expanding B;� about � � 0 and scale � so that
B;��0� � 1. The equation of motion for � then becomes

 ��� � V;���� � ����!P�=Mpl; (1)

where � is the energy density of matter, P is its pressure,
and ! parametrizes the way in which the chameleon
couples to matter. In the simplest models, � couples to
the trace of the energy momentum tensor, and so ! � �3.
In what follows, we take this to be our fiducial value of !
and note that the results for different O�1� values of ! are
very similar [5]. We note that the right-hand side of Eq. (1)
vanishes when � � �c���!P�:

 �c���!P� � M�����!P�=��nMplM3���1=n�1:

For�c���!P� to be real when����!P�> 0, we need
either n � 0 or for n to be negative and even and n �

0;�2 for the theory to be nonlinear. The mass of small
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perturbations about � � �c is mc �
��������������������
V;����c�

q
����������������������

�n�n� 1�
p

MjM=�cj
n=2�1.

One would expect, in the absence of any chameleon
mechanism, the force mediated by � to be �2 as strong
as gravity. As a result of quantum corrections, � will
generally differ slightly for different particle species,
which would standardly lead to a composition-dependent
force that would, in turn, violate WEP. Solar system
bounds on WEP violation require � & 10�5 in nonchame-
leon theories [1]. Chameleon theories have been shown to
be compatible with ��O�1� [2]. In this Letter, however,
we will go much further and report how, as a result of
nonlinear effects, it is possible for a chameleon field to
couple to matter much more strongly than gravity does
(i.e., �� 1) and yet for it to have remained thus unde-
tected. We define M� � Mpl=�, which is roughly the
energy at which chameleon particles would be produced
in particle colliders. It would be pleasant in the light of the
hierarchy problem if Mpl=�	 Mpl, say, of the grand
unified theory scale, or, if we hoped to find traces of it at
the LHC, maybe even the TeV scale. We show below that
both of these scenarios are allowed for.

Crucial to our ability to constrain chameleon theories is
a full understanding of how they behave as field theories. It
transpires that when �� 1, the nonlinear nature of the
potential V��� becomes very important. Even in the, sup-
posedly, simple case of the field produced by a single large
body, there might not exist any self-consistent linearization
of Eq. (1) that is valid everywhere [5]. Nonlinear effects are
also non-negligible when calculating the force produced by
one body upon another. When linearized theory fails, the
solution to the two-body problem cannot be found simply
by superimposing two copies of the field produced a single
body.

Nonlinear effects also play a role in determining the
effective large-scale or macroscopic theory associated
with the chameleon. Equation (1) defines the microscopic,
or particle-level, field theory for �, whereas in most cases
we are interested in the large-scale or coarse-grained be-
havior of �. In macroscopic bodies, the density is actually
strongly peaked near the nuclei of the individual atoms
from which it is formed, and these are separated from each
other by distances much greater than their radii. Rather
than explicitly considering the microscopic structure of a
body, it is standard practice to define an ‘‘averaged’’ field
theory that is valid over scales comparable to the body’s
size. If our field theory were linear, then the averaged
equations would be the same as the microscopic ones,
e.g., as in Newtonian gravity. But it is important to note
that this is very much a property of linear theories and is
not, in general, true of nonlinear ones. Nonlinear effects
must, therefore, be taken into account. We do this by
combining matched asymptotic expansions with exact ana-
lytical solution of the full nonlinear equations under certain
reasonable assumptions. We confirm our results by numeri-
cally integrating the field equations.

First, we define the concept of a thin shell. A body is said
to have a thin shell if the coarse-grained value of � (as
defined on scales that are large compared to the sizes of the
constituent particles of the body) is approximately constant
everywhere inside the body, except in a thin shell near the
surface of the body where large changes [O�1�] in its value
occur. The existence of a thin shell is related to the pres-
ence of nonlinear behavior. Deep inside a body with a thin
shell, � is constant, and so we might expect � � �c���,
where � is the density of the body (we assume P	 �).
The effective chameleon mass meff in the body would then
be given by meff � mc���. The effect of the nonlinearities
on the averaging, however, is to limit the averaged value of
m� to be smaller than some critical valuemcrit [5].mcrit is a
macroscopic quantity, but it depends only on the micro-
scopic properties of the body and the index n. It is inde-
pendent of �, M, and � [5]. We have modeled the body as
being composed of particles of radius Rp separated by an
average distance dp. The macroscopic mass of the chame-
leon in the body is then meff � min�mc���; mcrit�, where

 mcrit 

������������������
3jn� 1j

p
d�1
p �Rp=dp�q�n�=2; n � �4;

where q�n� � min�1; �n� 4�=�n� 1�� and mcrit 
 1:4=dp
when n � �4. Whenever meff � mcrit, it is because the
individual particles that make up the body have themselves
developed thin shells. This critical behavior emerges from
the requirement that nonlinear effects are negligible out-
side of the particle from r � Rp to r � dp: This implies a
maximal value of meff , i.e., mcrit, that depends only on Rp,
dp, and n. The n dependence arises because n determines
precisely when linear theory breaks down.
�-independent critical behavior is also seen in the �

force between two bodies. The onset of this critical behav-
ior is linked to the emergence of a thin shell. A body of
radius R and density �c in a background of density �b 	
�c has a thin shell if:

 meffR *
������������������
3jn� 1j

p
j1� ��c=�b�1=n�1j1=2; n � �4:

(2)

The existence of a thin shell is essentially due to nonline-
arities being strong near the surface of a body but weak in
other regions. When n � �4, a thin shell occurs for
meffR * 4, whereas linearized theory fails to be accurate
for meffR * 1:4. When n > 0, ��c=�b�1=n�1 � 1 and so
the thin shell condition, Eq. (2), depends greatly upon on
the background density. The same is not true when n � �4
since here ��c=�b��1=n�1� 	 1. Therefore, n > 0 theories
can behave differently in space-based experiments than
they do in laboratory ones, because the thin-shell condition
is more restrictive in the low-density background of space
than it is in the lab [2]. In contrast, theories with n � �4
will exhibit no big difference in their behavior in space-
based tests to that seen on Earth.

The existence of a thin shell in the test masses used in
experimental searches for deviations from general relativ-
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ity is vital if we are to evade their bounds. Whereas the
force between two non-thin-shelled bodies with separation
r is �2�1�mbr�e�mbr times the gravitational force be-
tween them (mb is the chameleon mass in the region
between the bodies), the force between two bodies, of
masses M1 and M2 with thin shells is found to be indepen-
dent of the coupling � [5]. When d� R1; R2, where R1

and R2 are the respective radii of the two bodies, this force
is found to be �12 times the strength of gravity, where for
n � �4:

 �12 �
S�n;mb�M

2
pl�1�mbr�e

�mbr

M1M2
�M2R1R2�

q�n�;

where S�n;mb� is �3=jnj�2=jn�2j for n <�4, whereas for
n > 0 it equals �n�n� 1�M2=m2

b�
2=�n�2�. When n � �4,

 �12 �
M2

pl�1�mbr�e
�mbr

8�M1M2

������������������������������������
ln�r=R1� ln�r=R2�

p :

For d & R1; R2, a different value for �12 applies and is
given below. This � independence was first noted in
Ref. [6], in the context of �4 theory. However, the authors
were mostly concerned with a region of parameter space
�< 1, �	 1; in our analysis, we go further: considering a
wider range of theories and also the possibility that �� 1.

We can understand the � independence as follows: Just
outside a thin-shelled body, the potential term in Eq. (1) is
large and negative [�O����=Mpl�], and it causes � to
decay very quickly. At some point, � will reach a critical
value�crit that is small enough so that nonlinearities are no
longer important. Since this all occurs outside the body,
�crit can depend only on the size of the body, the choice of
potential (M, �, n), and the mass of � in the background,
mb. This is precisely what was found above.

This � independence is of great importance if one
wishes to design an experiment to detect the chameleon
through WEP violations. Since the � force is independent
of the coupling � for bodies with thin shells, any micro-
scopic composition dependence in � will be hidden on
macroscopic length scales. The only ‘‘composition’’ de-
pendence in �12 is through the masses of the bodies and

their dimensions (R1 and R2). The strength of WEP viola-
tions is quantified by the Eötvos parameter �. If we mea-
sure the differential accelerations of two test masses M1

and M2 of radii R1 and R2 towards a third body, mass M3

and radius R3, then � � �13 � �23. Taking the third body
to be the Sun or the Moon, experimental searches for WEP
violations have up to date found that � & 10�13 [7]. In
most of these searches, although the composition of the test
masses is different, they are made to have the same mass
(M1 � M2) and the same size (R1 � R2). Therefore, if the
test masses have thin shells, we have � � 0, and no WEP
violation will be detected. The only implicit dependence of
this result on � is that the larger the coupling is, the more
likely it is that the test masses will satisfy the thin-shell
conditions. The first important consideration for future
experiments is that, if one wishes to detect a chameleon
field through WEP violations, one must ensure either that
test masses do not satisfy the thin-shell conditions or that
they are of different masses and/or dimensions.

We shall assume that such an experiment has been
conducted, using two spherical test bodies both with a
mass of 10 g, where one is made entirely of copper and
the other of aluminum. The strongest bounds on chameleon
fields would then come from measuring the differential
acceleration of these bodies towards the Moon. We indi-
cate in Fig. 1 the restrictions that finding � & 10�13 in
such an experiment would place on these chameleon theo-
ries. The Moon is a better choice of attractor than the Earth
or the Sun for such experiments, since �13 is proportional
toM2

pl=M1M3 and so the smaller mass of the test bodiesM1

and the attractor M3, the larger � will be compared to
gravity. The corollary of this result is that if we are unable
to detect � in lab-based, microgravity experiments where
both M1 and M2 �O�10 g� (such as the Eöt-Wash experi-
ment), then the � force between larger (say, human-sized)
objects would also be undetectably small. For this reason,
measurements of the differential acceleration of the Earth
and Moon towards the Sun, e.g., lunar laser ranging, are not
competitive with lab-based experiments.

Future, space-based tests of WEP promise to be able to
detect � up to a precision of 10�18; we indicate in Fig. 1 the
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FIG. 1. The whole of the shaded area shows the allowed parameter space with all current bounds. For some values of M and �, we
need the BeCu sheet to have a thin shell; this results in a region near ��O�1� being ruled out. Future space-based tests could detect
the more lightly shaded regions. The solid horizontal lines indicate the case where the chameleon field behaves like dark energy. Plots
for theories with n <�4 or n > 0 are similar to cases n � �8 and n � 4, respectively.
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regions of parameter space that such experiments would be
able to detect. The �-mediated force will also produce
effective corrections to the 1=r2 behavior of gravity. The
best bounds on such corrections come from the Eöt-Wash
experiment performed by Hoyle et al. [8], which employs a
torsion balance to measure the torque induced on a pendu-
lum by a rotating attractor at a separation d. For d *

0:1 mm, they find that �12 & 10�2 [8]. For a chameleon
theory to satisfy this bound, we need both the attractor and
pendulum to have thin shells. In this scenario, d is small
compared to the size of test masses (d < R1, R2) and so the
previous formula for �12 does not apply. When the mass of
the chameleon inside the attractor and pendulumm� obeys
m�d� 1 (as is the case for � * 1), we find that the �
force is � times the strength of gravity, where �12 is

 5�10�4

�
M

�0:1 mm��1

�
2�n�4�=n�2

��1=n
���
2
p
B�12;

1
2�

1
n�

jnjd=0:1 mm

�
2n=n�2

;

where B�p; q� is the beta function. We note that �, as
before, is independent of �. The Eöt-Wash bound is stron-
gest for n � �4 where it appears to rule out a ‘‘natural’’
value for � of 1=4!: 0:56��1 & 1. However, this is not the
whole story. In this experiment, a uniform 10 �m thick
BeCu membrane is placed between the pendulum and
attractor to shield electromagnetic forces. For O�1� values
of � and �� 1=4! or M� �0:1 mm��1, this sheet does not
have a thin shell and makes little difference to the analysis.
For slightly larger values of �, however (� * 104 and � �
1=4! for n � �4), it will develop a thin shell. Taking the
mass of the chameleon inside the sheet to be ms, the effect
of this membrane is then to attenuate �12 by a factor of
exp��msds�, where ds is the thickness of the sheet. The
Eöt-Wash bound is then easily satisfied even for �� 1=4!.
The larger � becomes, the larger ms is and the less re-
strictive this bound becomes. Experiments such as this
must, therefore, be redesigned if they are to be able to
detect chameleon theories with �� 1.

The prospect that couplings with �� 1 could be al-
lowed is exciting. But to be taken seriously, we must also
consider bounds coming from astrophysical constraints,
such as the stability and mass-radius relationship of white
dwarfs and neutron stars as well as bounds coming from
big bang nucleosynthesis (BBN) and the cosmic micro-
wave radiation temperature anisotropies [3,5]. These
bounds can be summarized as requiring j��=Mplj & 0:1
over the whole Universe since the BBN epoch [3,5]. This
condition is enough to ensure that there has been no more
than a 10% change in particle masses since BBN and in the
redshift of the surface of last scattering. While we satisfy
the same physical constraints as Amendola for nonchame-
leon, coupled quintessence [9], the chameleon mechanism
ensures a significantly less restrictive bound on � than was
found there. Astrophysical constraints place only a weak
upper bound on �, which is strongest for n � �4, e.g., if
� � 1=4!, we need Mpl=� * 10 GeV. However, realisti-

cally, we probably require Mpl=� * 200 GeV for it not to
have been seen so far in particle colliders.

In summary, we have considered a wide spectrum of
scalar field theories with a chameleon mechanism, and, for
the first time, the nonlinear structure of these theories
has been properly taken into account. We have found a
surprising result that the chameleon force between two
bodies with thin shells is independent of their coupling to
the field � and that, as a result, the bounds on the coupling
� can be exponentially relaxed. We have also noted that
some laboratory experiments should be redesigned to de-
tect the chameleon. For ‘‘natural’’ values of M�
�0:1 mm��1 or �� 1=4!, the strongest upper bounds on
� probably come from particle colliders, and 200 GeV &

Mpl=� & 1015 GeV is allowed for all n. If Mpl=��
1 TeV, we might even hope to see chameleon production
at the LHC; although without a renormalizable quantum
theory of the chameleon, it is hard to say for sure if this will
happen. Planned space-based tests such as STEP,
MICROSCOPE, and SEE [10] promise improved preci-
sion, and, when n > 0, there is also still the possibility that
WEP violations in space can be stronger than the level
already ruled out by laboratory-based experiments. As
noted in Refs. [2,3], the chameleon field is a good candi-
date for dark energy if M� ����

1=4 
 �0:1 mm��1; this
result is unchanged for �� 1.

In conclusion, scalar field theories that couple to matter
much more strongly than gravity are not only viable but
could well be detected by a number of future experiments
provided that they are properly designed to do so. This
result opens up an altogether new window which might
lead to a completely different view of the role played by
scalar fields in particle physics and cosmology.
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