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We discuss the prospects for directly detecting a circular polarization signal of the gravitational-wave
background. We find it is generally difficult to probe the monopole mode of the signal due to the broad
directivity of the gravitational-wave detectors. But the dipole (l � 1) and octupole (l � 3) modes of the
signal can be measured in a simple manner by combining outputs of two unaligned detectors, and we can
dig them deeply under confusion and detector noises. Around f� 0:1 mHz the Laser Interferometer
Space Antenna will provide ideal data streams to detect these patterns whose magnitudes are as small as
�1 percent of the detector noise level in terms of the nondimensional energy density �GW�f�.
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Introduction.—As gravitational interaction is very
weak, significant efforts have been made to detect gravi-
tational waves. But, on the other hand, we will be able to
get rich information of the Universe by observing gravita-
tional waves that directly propagate to us with almost no
absorption. Various astrophysical and cosmological mod-
els predict the existence of a stochastic gravitational-wave
background, and it is an interesting target for gravitational-
wave astronomy [1]. For its prospects, we need to under-
stand how we characterize the background and what as-
pects we can uncover with current and future detectors.

One such aspect is circular polarization, which describes
whether the background has asymmetry with respect to
magnitudes of right-handed and left-handed waves.
Circular polarization of gravitational-wave background
might be generated by helical turbulent motions (see,
e.g., [2]). The inflation scenario predicts gravitational-
wave background from quantum fluctuations during accel-
eration phase in the early universe, but asymmetry of left-
and right-handed waves can be produced with the gravita-
tional Chern-Simon term that might be derived from string
theory and might be related to the creation of baryon
number (see, e.g., [3]). The primordial gravitational-wave
background, including information of its circular polariza-
tion [4], can be indirectly studied with cosmic microwave
background (CMB) measurement [5] at very low fre-
quency regime f� 10�17 Hz that is largely different
from the regime directly accessible with gravitational-
wave detectors studied in this Letter. The gravitational-
wave background from galactic binaries can be polarized,
if the orientation of their angular momentum has coherent
distribution, such as correlation with the galactic structure.
While observational samples of local binaries do not favor
such correlation [6], this will also be an interesting target
that can be directly studied with the Laser Interferometer
Space Antenna (LISA).

It is well known that observation of gravitational waves
is intrinsically sensitive to its polarization state [7]. This is
because we measure spatial expansion and contraction due

to the wave, and polarization determines the direction of
the oscillation perpendicular to its propagation direction.
Another important nature of the observation is that we have
to simultaneously deal with waves basically coming from
all the directions, in contrast to observations with typical
electromagnetic wave telescopes that have sharp directiv-
ity. Therefore, polarization information and directional
information couple strongly in observational analysis of
the gravitational-wave background. In general, orientation
of a gravitational-wave detector changes with time, and
induced modulation of the data stream is useful to probe
the polarization and directional information. For ground-
based detectors, such as LIGO, this is due to the daily
rotation of the Earth [8]. For a space mission like LISA,
this change is determined by its orbital choice [9,10]. In
addition, we can also expect that several independent data
streams of gravitational waves will be taken at the same
time [11,12]. In this Letter, in view of these observational
characters, we study how well we can extract information
of circular polarization of the background in a model
independent manner about its origin.

Formulation.—The standard plane wave expansion of
metric perturbation by gravitational waves is given as

 hab�t; x� �
X

P��;�

Z 1
�1

df
Z
S2
dnhP�f;n�e

2�if�t�n�x�ePab�n�;

where S2 is the unit sphere for the angular integral, the unit
vector n � �sin� cos�; sin� sin�; cos�� is the propagation
direction, and e�ab and e�ab are the basis for the transverse-
traceless tensor. We fix them as e�ab � ê� 	 ê� � ê� 	 ê�
and e�ab � ê� 	 ê� � ê� 	 ê�, where ê� and ê� are two
unit vectors with a fixed spherical coordinate system. As
the metric perturbation hab�t; x� is real, we have a relation
for the complex conjugate; hP��f;n� � hP�f;n�


. When
we replace the direction n! �n, the matrices have cor-
respondences e�ab ! e�ab (even parity) and e�ab ! �e

�
ab

(odd parity).
To begin with, we study gravitational-wave modes at a

frequency f. Here, we omit explicit frequency dependence
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for notational simplicity, unless we need to keep it. The
covariance matrix

 

hh��n�h


��n

0�i hh��n�h


��n

0�i

hh
��n�h��n
0�i hh��n�h
��n

0�i

� �

for two modes h��n� and h��n� is decomposed as

 

�drc�n� n
0�

4�

I �Q U� iV
U� iV I �Q

� �
; (1)

where the symbol h. . .i represents to take an ensemble
average for superposition of stationary incoherent waves,
and �drc��� is the delta function on the unit sphere S2. We
have defined the following Stokes parameters [13] analog
to electromagnetic waves as I�n� � hjh�j

2 � jh�j
2i=2,

Q�n� � hjh�j
2 � jh�j

2i=2, U�n� � hh�h


� � h



�h�i=2,

and V�n� � ihh�h


� � h



�h�i=2. The parameter I�n� rep-

resents the total intensity of the wave, whileQ�n� andU�n�
is related to linear polarization. The parameter V�n� is
related to circular polarization, and its sign shows whether
right- or left-handed waves dominate. When we rotate the
basis vectors ê� and ê� around the axis n by angle  , the
parameters I and V are invariant (spin 0). But the combi-
nations �Q� iU��n� are transformed as �Q� iU�0�n� �
e�4i �Q� iU��n� and have spin �4 [13].

Next we discuss the response of a two-arm interferome-
ter J with a 90
 vertex angle and equal arm-length L. We
put l1 and l2 as unit vectors for the directions of the arms.
The beam pattern functions FPJ � �l1 � e

P � l1 � l2 � e
P �

l2�=2 (P � �, �) represent relative sensitivities to two
linearly polarized gravitational waves (P � �, �) with
various directions n [7]. Note that the function F�J has
even parity and F�J has odd parity with respect to the
direction n (see, e.g., [14]).

In this Letter we mainly deal with a low frequency
regime with f=f
 � 1. Here, using the arm-length L, we
have defined a characteristic frequency f
 � 1=�2�L� that
corresponds to 10 mHz for LISA and 1 Hz for the big bang
observer (BBO) [15,16]. LISA is formed by three space-
craft that nearly keep a regular triangle configuration [9].
From its six one-way data streams, we can make time-
delay-interferometer (TDI) variables that cancel laser fre-
quency noises. We can select three TDI variables A, E, and

T whose detector noises are not correlated and can be
regarded as independent [12]. At the low frequency re-
gime, the responses of the A and E modes can be effec-
tively regarded as those of two-arm interferometers whose
configuration are shown in Fig. 1 [11]. In this figure we put
the whole system on the XY plane (� � �=2). The beam
pattern functions of the A mode are given as

 F�A �n� �
1

2
�1� cos2�� cos2�;

F�A �n� � � cos� sin2�;
(2)

while those for the E mode are given by replacing �!
�� �=4 in the above expressions. The beam pattern
functions for the T mode are quite different from the A
and E modes, and given as FPT �

P3
i�1�mi � e

P �mi��mi �
n� (P � �, �), where directions of three unit vectors mi
are shown in Fig. 1 [14,17]. At low frequency, regime
sensitivity of the T mode to gravitational waves is
��f=f
��1 times worse than those for the A and E modes
[12,17]. Therefore we put this mode aside for a while.

We can express responses of the A and E modes to
gravitational waves from a single direction n as (J � A, E)

 rJ�n� � �F�J h��n� � F
�
J h��n�� � i�f=f
�DJ�n�

�O�f2=f2

�; (3)

where the last two terms are a correction caused by the
finiteness of the arm length, and two real functions
DA��;�� and DE��;�� depend on the propagation direc-
tions n of waves (see, e.g., [14]). In Eq. (3) we neglected
overall factors that depend only on frequency f and are
irrelevant for our study. These formal expressions for the
perturbative expansion with respect to the ratio (f=f
) can
be generally used with relevant beam pattern functions,
including for the T-mode or Fabri-Perot detectors as LIGO.

We now take the low frequency limit keeping only the
leading order terms. The information V cannot be pro-
duced from the response rA or rE alone. To get it we
need an independent linear combination of h� and h�.
For example the term hrA��;��rA��;��
i can be written
only with I, Q, and U. The cross term is given as

 

hrA�n�rE�n
0�
i �

�drc�n� n
0�

4�

�
1

2

��
1� cos2�

2

�
2
� cos2�

�
sin4�I��;�� �

1

2

��
1� cos2�

2

�
2
� cos2�

�
sin4�Q��;��

�

��
1� cos2�

2

�
cos�

�
cos4�U��;�� � i

��
1� cos2�

2

�
cos�

�
V��;��

�
: (4)

With the following combination
 

Im�hrA�n�rE�n0�
i� � �
�drc�n� n

0�

4�

�

��
1� cos2�

2

�
cos�

�
V��;�� (5)

we can extract the circular parameter V alone. As shown in

Fig. 1, the effective detector E is obtained by rotating the
detector A around the Z axis by �=4 [11]. If this angle is �,
there appears a factor sin2� in Eq. (5). Therefore, in some
sense, LISA will provide an optimal set (A, E) to study the
parameter V. In contrast, sensitivity of correlation analysis
to the monopole intensity I00 is proportional to cos2�, and
LISA cannot probe it with the method.
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We now discuss responses of detectors to gravitational
waves from all directions n. First, what we can get ob-
servationally from the A and E modes are the follow-
ing integrals RA �

R
rA�n�dn and RA �

R
rA�n�dn. Con-

sidering the spin of quantities I, Q� iU and V we can
expand them in terms of the spin weighted spherical har-
monics sYlm as I�n� �

P
IlmYlm�n�, �Q� iU��n� �P

K�;lmYlm�n�, V�n� �
P
VlmYlm�n�. With these expan-

sions and Eq. (5), the combination C � ImhRAR
Ei is evalu-
ated as C � � 8

5

����
3

p
V10 �

2
5

����
7

p
V30. When we rotate inter-

ferometers A and Ewith Euler angles (��, �), the signal C
becomes

 C ��;�; �� � �
16�
15

V1mY1m��;�� �
4�
35
V3mY3m��;��:

(6)

This result is obtained by relating the coefficients Vlm in
the original coordinate with those in the rotated coordinate
[8]. LISA moves around the Sun with changing the ori-
entation of its detector plane that is inclined to the eclip-
tic plane by 60
 [9]. To describe these motions in the
ecliptic coordinate, the Euler angles are given as � �
2��t=1 yr� � �0, � � �=3, and � � �2��t=1 yr� � �0

with time t and constants �0 and �0 [11]. This parameteri-
zation is also valid for BBO [15]. The parameter � deter-
mines the so-called cartwheel motion, but the combination
C��;�; �� does not depend on it. From Eq. (6) we can
understand that the observed signal C��;�; ��with LISA is
decomposed into modulation patterns with frequencies
f � 0, �1=3, �1=2, and �1 yr�1 from m � 0, �1, �2,
and�3 modes, respectively. It would be possible to predict
these patterns, including the dipole mode induced by our
peculiar motion to cosmological background [21] and
those tracing the galactic structure. This modulation can
be used for a consistency check to discriminate the origin
of the background.

So far we have used the low frequency approximation
with f=f
 � 1. When we increase the frequency f, the
correction terms i�f=f
�DA��;�� and i�f=f
�DE��;�� in
Eq. (3) change the phases of rA��;�� and rE��;�� as a

function of propagation directions n. With these correction
terms, the combination RAR
E � R



ARE has contributions of

I, Q, and U modes, and we cannot extract the circular
polarization V in a clean manner. Note also that the first
order term O�f=f
� for the combination RAR



E � R



ARE

depends on the parameter V due to the corrections. We
can restate the situation as follows; roughly speaking, the
circular polarization is measured by correlating two data
with phase difference �=2 [13]. This is related to the fact
V�n� / RehrA��;��rE��;��


ei�=2i. But the finiteness of
the arm length modulates the phase as a function of direc-
tion, and we cannot keep the phase difference �=2 simul-
taneously for all the directions. When we consider the
spatial separation d of two interferometers, the same kind
of arguments hold by perturbatively expanding the phase
difference exp�2�ifd � n� with a expansion parameter
(fjdj) in addition to that with (f=f
) for the effects of
arm length. Therefore, in our analysis, the requirement for
the low frequency regime is not for simplicity of calcula-
tion, but is a crucial condition to extract the circular
polarization alone in a straightforward manner with
gravitational-wave detectors that have a broad directional
response and are remarkably different from electromag-
netic wave telescopes.

As shown in Eq. (4), we cannot measure the monopole
moment V00 of circular polarization using the signal C
made from the A and E modes due to parity reasons at
the low frequency limit. More specifically, products, such
as F�A F

�
E , have odd parity. This simple results hold for

signal C with any two two-arm interferometers at low
frequency limit. It does not matter whether their vertex
angles are not �=2, whether the two-arm lengths of each
detector are not equal, or whether two interferometers are
on unparallel planes (e.g., for the LIGO and VIRGO com-
bination). The signals C with (A, T) or (E, T) modes depend
on the coefficients Vlm with even l at their leading order.
But, in the case of LISA, the combinations do not have
monopole moment V00. This is because of the apparent
symmetry of these data streams [12,14]. Furthermore we
cannot get the moment V00 even using their higher order
terms with O��f=f
�n� (n � 1), as long as LISA is sym-
metric at each vertex. A future mission might use multiple
LISA-type sets with data streams fA;E; Tg; fA0; E0; T0g; . . .
[15]. We confirmed that even if detector planes for A and T0

modes are not parallel, the monopole V00 can not be
captured by the signal C with their combination at their
leading order.

As we discussed so far, it is not straightforward to
capture the monopole V00 in a simple manner. But, in
principle, we can manage this. For example, we add a
detector E2 that is given by moving the original detectors
E in Fig. 1 by distance d toward the�Z direction, and then
take the signal RAR
E. At order O��fd�1�f=f
�0�, we can
probe the monopole Voo [22].

Observation with LISA.—Next we discuss how well we
can analyze the information Vlm of circular polarization of

FIG. 1 (color online). The effective two-arm interferometers
corresponding to the TDI modes A and E. The three spacecraft of
LISA are shown with circles on the XY plane. The beam pattern
functions for the T mode are given with three unit vectors mi as
FPT �

P3
i�1�mi � e

P �mi��mi � n�.
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the stochastic gravitational-wave background with LISA.
The observed inclinations of local galactic binaries are
known to be consistent with having random distribution
with no correlation to global galactic structure [6]. This
suggests that the confusion background by galactic bi-
naries is not polarized. In the future, LISA itself will
provide basic parameters for thousands of galactic binaries
at f � 3 mHz, including information of their orientations
[9]. This can be used to further constrain the allowed
polarization degree of the galactic confusion noise.
While this information will help us to discriminate the
origin of the detected polarization signal with LISA, our
analysis below does not depend on this outlook. Our target
here is a combination p�GW;b�f�, where �GW;b�f� is the
normalized energy density of the gravitational-wave back-
ground (see [1] for its definition), regardless of its origin.

The parameter p � �
�����������������������������������������������P
mjV1mj

2 �
P
mjV3mj

2
q

�=It is its cir-
cular polarization power in l � 1 and 3 multipoles (It ���������������������P

lmjIlmj
2

q
: total intensity). For simplicity, we do not

discuss technical aspects in relation to the time modulation
of the signal C due to the motion of LISA that was ex-
plained earlier around Eq. (5). We can easily make an
appropriate extension to deal with it [10].

As we will see below, the signal C is a powerful probe to
study the target p�GW;b�f� in a frequency regime where
the amplitude p�GW;b�f� itself may be dominated by the
confusion background noise or detector noise. We take a
summation of the signal C for Fourier modes around a
frequency f in a bandwidth �f� f. As the frequency
resolution is inverse of the observational time Tobs and
the total number of Fourier modes in the band is
(Tobs�f), the expectation value for the summation be-
comes C�Tobs�f� � pIt�Tobs�f�. Here we used the fact
that the detector noises for the A and E modes are not
correlated. In contrast the fluctuation N for this summation
is given as N �

P
f�nA�f�nE�f�


 � nA�f�
nE�f��, where
the total noises nA�f� and nE�f� include both detector noise
and the circularly unpolarized potion of the confusion
noise. The root-mean-square value of N is written as
hjNj2i1=2 � Sn�f��Tobs�f�

1=2 with Sn�f� being the total
noise spectrum for the A and E modes. Thus the signal-
to-noise ratio (SNR) for the measurement is SNR�
pIT�Tobs�f�1=2=Sn�f�. We can rewrite this expression
with using the normalized energy density �GW and obtain
SNR� �p�GW;b

�GW;n
��Tobs�f�1=2 where the magnitude �GW;n

corresponds to the total noise level around frequency f.
When the detector noise is dominated by the background
noise, we have �GW;n ��GW;b. This will be the case for
LISA around 0:3 mHz & f & 2 mHz. As a concrete ex-
ample, we put f� 0:1 mHz with the expected noise level
�GW;n � 10�10 [9], and take bandwidth �f� f. Then we
have SNR� �

p�GW;b

10�12 ��T=3 yr�1=2. The improvement factor
�Tobs�f�

�1=2 for the detectable level of the target p�GW;b

is caused by the same reason as standard correlation
technique for detecting stochastic background [18].
Interestingly, this factor �Tobs�f��1=2 � 0:01 around f�
0:1 mHz is almost same as the maximum level of relative
contamination �f=f
� � 0:01 for LISA by other modes (I,
Q, U) due to finiteness of arm-length. A Japanese future
project DECIGO [19] plans to use a Fabri-Perot type
design with its characteristic sensitivity f
 � 50 Hz [20],
while its best sensitivity is around �0:3 Hz similar to the
BBO whose characteristic frequency is f
 � 1 Hz.
Therefore, DECIGO is expected to be less affected by
other modes and has potential to reach the level p�GW;b �
10�16 with 1 yr observation.
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