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We investigate which entanglement resources allow universal measurement-based quantum computa-
tion via single-qubit operations. We find that any entanglement feature exhibited by the 2D cluster state
must also be present in any other universal resource. We obtain a powerful criterion to assess the
universality of graph states by introducing an entanglement measure which necessarily grows unbound-
edly with the system size for all universal resource states. Furthermore, we prove that graph states
associated with 2D lattices such as the hexagonal and triangular lattice are universal, and obtain the first
example of a universal nongraph state.
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Introduction.—Quantum computation is a promising
attempt to utilize the laws of quantum physics for novel
applications. Indeed, it was shown that problems such as
factoring or database search can be performed much faster
on a quantum computer than on any known classical
device. Despite these exciting perspectives, the question:
what are the essential resources that give quantum com-
puters their additional power over classical devices? is still
poorly understood. Various models for a quantum com-
puter exist, each based on different concepts, which indi-
cates that there may not be a straightforward answer to this
difficult question. The new paradigm of measurement-
based quantum computation (MQC) [1–4], with the one-
way quantum computer [1] and the teleportation-based
model [2,3] as the most prominent examples, has lead to
a new and fresh perspective in these respects. In particular,
these and other studies [5] highlight the central role of
entanglement in quantum computation.

In MQC, quantum information stored in a quantum state
is processed by performing sequences of adaptive mea-
surements. This is in striking contrast to the quantum
circuit model, where unitary operations are realized via
coherent evolution. While the teleportation-based models
[2,3] use joint (i.e., entangling) measurements on two or
more qubits, thereby performing sequences of
teleportation-based gates, the one-way model [1] uses a
highly entangled state, the cluster state [6], as a universal
resource which is processed by single-qubit measurements.
Unified descriptions of all measurement-based models
have recently been proposed in Refs. [7,8].

Here we focus on the one-way model, where the re-
source character of entanglement is particularly high-
lighted, as it is clearly separated from the processing via
local measurements which do not act as additional source
for entanglement. The distinct features of the one-way
model also allow us to cast the introductory question into
a much more concise form, viz. what are the essential
properties of the cluster state that make it a universal
resource? In this Letter we will investigate this question.
The main objectives of our investigation are (i) to under-

stand which states, other than the cluster states, are uni-
versal resources for MQC and (ii) to gain insight in the role
of entanglement in this matter. It is believed that the high
degree of entanglement in the (2D and 3D) cluster states
plays an important role in the universality of these states,
but the explicit entanglement features accounting for this
have not been identified yet. For example, it has recently
been found that one-way quantum computations imple-
mented on certain graph states [such as the 1D cluster
states and the Greenberger-Horne-Zeilinger (GHZ) states]
can be simulated efficiently on a classical computer [9].
Nevertheless, similar to the 2D and 3D cluster states, these
states are highly entangled, e.g., in the sense that they
maximally violate certain Bell inequalities [10].

In our study we will slightly extend the framework of the
one-way model by allowing arbitrary local operations and
classical communication (LOCC) to be implemented on re-
source states, rather than restricting ourselves to local mea-
surements, hence emphasizing the role of entanglement in
this context. Within this general framework we obtain two
main results. First we find large classes of states, including
various families of graph states [11], that are not universal,
by identifying an entanglement measure that needs to grow
unboundedly with the number of qubits for all universal
resources. Second, we provide new examples of universal
resource states, including graph states corresponding to
hexagonal, triangular, and Kagome lattices, as well as an
example of a universal nongraph state.

Definition of universal resources.—Let us briefly recall
the general procedure of the one-way model endowed with
a 2D cluster state as a universal resource [1]. It is capable to
simulate any unitary evolution U, acting on a standard
input state j�in (the n-qubit product state of a �1 eigen-
state of �x), and to produce a corresponding output state
j�i :� Uj�in deterministically, as follows. (i) A 2D clus-
ter state jCk�ki is prepared, which is a particular instance
of a graph state. A graph state on m qubits is the joint
eigenstate of m commuting correlation operators Ka :�

��a�x
N

b2N�a��
�b�
z , where N�a� denotes the set of neighbors
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of qubit a in the graph [11]. The 2D cluster state is obtained
if the underlying graph is a k� k square lattice (thus m �
k2). (ii) A sequence of adaptive one-qubit measurements is
implemented on some subset of qubits in the cluster.
(iii) After these measurements, the state of the system
has the form j��ij��

outi, where j��
outi � ��Uj�in is the

desired output state up to a multiqubit Pauli operator ��

which depends on the measurement outcomes � obtained
in (ii), and the measured qubits are in a product state j��i
which also depends on the measurement outcomes �. Note
that the required size of the cluster and the choice of local
measurements are determined by U.

Having the above procedure in mind, we will propose a
definition of a universal resource for MQC. Before doing
this, two remarks are in order. First, universality is a
property that will be attributed not to a single state but to
a set of infinitely many states � � fj 1i; j 2i; . . .g [12].
When considering the 2D cluster state model, it is indeed
clear that it is not one cluster state which forms a universal
resource, but rather the family of all 2D cluster states. This
is most evident in step (i) above, where the size of the
cluster state depends on the unitary to be simulated.
Second, here we are only interested in universality of a
family of states � and not necessarily in its efficiency as a
resource for quantum computation. That is, in our defini-
tion we will only require that it is possible, in principle, to
simulate any unitary operation U by implementing LOCC
on a suitable state j i 2 �, dependent on U, and we will
not consider the size (support) of j i relative to the com-
plexity of U.

We are now ready to formulate the following definition.
A family � is called a universal resource for MQC if for
each state j�i on n qubits there exists a state j i 2 � onm
qubits, with m � n, such that the transformation j i�
j�ij�im�n is possible deterministically (with probability
1) by LOCC, denoted symbolically by j i �LOCC j�i.
That is, using only states within the family � as resource,
any state j�i can be prepared, and equivalently any unitary
operation U acting on an input state j�in, given as j�i �
Uj�in, can be implemented. This definition is in the spirit
of the one-way model.

The following elementary observation immediately fol-
lows from the universality of the 2D cluster states.

Observation 1.—A set of states � is a universal resource
for MQC if and only if all 2D cluster states jCk�ki (for all
k) can be prepared from the set � by LOCC.

The above insight, while indeed simple, leads to power-
ful techniques to both obtain no-go theorems, providing
examples of sets � which are not universal resources, and
to construct several nontrivial examples of universal re-
sources, other than the sets of 2D or 3D cluster states.

Nonuniversality and entanglement.—First we study no-
go results. Here, our general strategy will be the following.
Let � be a given set of states, of which one wishes to assess
whether it is a universal resource. To do so, suppose one

can identify a functional E�j i� exhibiting the following
two properties: (P1) E�j�i� � E�j�0i� whenever
j�i �LOCC j�0i, (P2) sup8j�iE�j�i�> supj i2�E�j i�.
Property (P1) states that the measure E cannot increase
under LOCC, and (P2) states that the supremal value of E,
when the supremum is taken over all states, is not reached
on the family �. Clearly, (P1) and (P2) imply that the set �
cannot be a universal resource. Note that from the univer-
sality of the 2D cluster states one has sup8j�iE�j�i� �
supkE�jCk�ki�. Using this property as a convenient refer-
ence, suitable choices for the measure E will give rise to
examples of nonuniversal resources.

As the requirements (P1) and (P2) are in fact quite
general, a priori there exist several candidates for measures
E. As our main example we focus on a measure having its
roots in graph theory, and which will prove particularly
useful to assess whether sets of graph states are universal
resources. This measure will be called (entropic) entangle-
ment width, as its definition is a direct generalization of a
graph invariant called rank width [13]. The entanglement
width of an m-qubit state j i is defined via the minimiza-
tion of the bipartite entanglement entropy of j i over a
specific class of bipartite splits, as follows. First, let T be a
subcubic tree graph, i.e., a connected graph without cycles
and every node in the tree is incident with at most three
edges. The nodes with one edge are called the leaves of T.
We consider trees T with exactly m leaves, which are
identified with the set of qubits V :� f1; . . . ; mg. For any
edge e � fi; jg of T, let T n e be the graph obtained by
deleting the edge e from T. The graph T n e then consists
of exactly two connected components, which induce a
bipartition (AeT , BeT) of the set of qubits V. Next, define
�T�j i� to be the maximum, over all edges e of T, of the
quantity EAeT �j i�, where the latter is the bipartite entan-
glement entropy of j i with respect to the bipartition (AeT ,
BeT). The entanglement width of j i is now defined as

 Ewd�j i� :� min
T
�T�j i� � min

T
max
e2T

EAeT �j i�; (1)

where the minimization is taken over all subcubic trees T
with m labeled leaves.

An exact evaluation of entanglement width in a generic
state is likely to be a hard problem, given the min-max
problem in the definition. However, the strength of this
measure lies in its connection to the graph-theoretical
measure rank width rwd�G� [13], where good upper and
lower bounds—that are sufficient for our purpose—are
known. The entanglement width of a graph state coincides
with the rank width of the underlying graph, which follows
from the equivalence of the cut rank [13] of an adjacency
matrix and the bipartite entanglement of the corresponding
graph state [11].

Note that entanglement width is invariant under local
unitary operations and that it vanishes on complete product
states. Furthermore, it is nonincreasing under LOCC op-
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erations. To see this, let j i be an m-qubit state which is
convertible by LOCC into another m-qubit state j 0i. We
show that Ewd�j i� � Ewd�j 0i�. Let T0 be a subcubic tree
such that �T0

�j i� � Ewd�j i� and let e0 be an edge of T0

such that EAe0
T0

�j 0i� � �T0
�j 0i�. We then have

 Ewd�j i� � �T0
�j i� � EAe0

T0

�j i� � EAe0
T0

�j 0i�

� �T0
�j 0i� � Ewd�j 

0i�: (2)

Using this result, we will show that entanglement width
satisfies property (P1). Let j i and j�i be states onm and n
qubits (m � n), respectively, such that j i �LOCC j�i.
Equivalently, j i can be converted into j�ij�im�n by
means of LOCC and thus Ewd�j i� � Ewd�j�ij�i

m�n�.
As the states j�ij�im�n and j�i have equal entanglement
width, one finds that Ewd�j i� � Ewd�j�i�.

Regarding (P2), we show that Ewd�jCk�ki� � log2�k�
2� � 1 using a graph invariant called clique width cwd �G�,
since cwd �Ck�k� � k� 1 if k � 3 [14] and rwd �
log2�cwd� 1� � 1 [13]. Thus, Ewd�jCk�ki� diverges
when k tends to infinity. This leads to the following result.

Theorem 1.—Any universal resource for MQC must
have an unbounded entanglement width.

This result allows us to rule out several classes of graph
states as being nonuniversal resources, namely, all classes
having a bounded rank width. The list of nonuniversal
graph states includes (the reader is referred to the literature
for definitions) cycle graphs, cographs, graphs locally
equivalent to trees, graphs of bounded tree width, graphs
of bounded clique width, or distance-hereditary graphs. In
particular, 1D cluster states jCki are not universal, since
Ewd�jCki� � 1 for every k [15]. More generally, all graph
states with bounded tree width twd �G� are not universal
[16], which follows from the inequality Ewd�jGi� � 4�
2twd�G��1 � 1 [17]. This also implies that the family of
GHZ states (which correspond to tree graphs) is not a
universal resource. These results support recent findings
that any one-way computation performed on 1D cluster
states or graph states with small tree width can efficiently
be simulated on a classical computer [9].

As a second example of a measure satisfying (P1) and
(P2), consider the localizable entanglement ELab�j i� (of an
arbitrary state j i) between pairs of qubits a and b mea-
sured by the concurrence [19]. This quantity is an entan-
glement monotone for 2� 2� l systems [20] and also
fulfills property (P1). As ELab�jCk�ki� � 1 for every pair
of qubits a and b, deterministic generation of cluster states
by means of LOCC requires as a necessary (but by no
means sufficient) condition that there exists at least one
pair of qubits in the system having unit localizable entan-
glement. This simple condition already identifies numer-
ous nonuniversal resources, such as, e.g., the family of W
states. A stronger condition can be obtained by considering
the maximal size NLE�j i� of a subset of qubits in the
system in which all pairs of qubits have unit localizable

entanglement. AsNLE�j i� fulfills (P1) andNLE�jCk�ki� �
k2, it follows that the measure NLE�j i� must grow un-
boundedly on any universal resource. In particular, this
implies that any class of states associated with some ge-
ometry for which the localizable entanglement ELab exhib-
its a decay with the distance k xa � xb k cannot be
universal resource; e.g., ground states of strongly corre-
lated spin systems on any type of lattice where the above
decay of ELab is observed are not universal. Notice that even
a diverging entanglement length is not sufficient to guar-
antee universality.

Examples of universal resources.—We now turn to the
second main part of our analysis, where we obtain ex-
amples of families of states which are universal resources.
In particular, we show

Theorem 2.—The graph states corresponding to the hex-
agonal, triangular, and Kagome lattices are universal.

The proof is given in Fig. 1. We remark that other
universal resource states have been presented [8] based
on nonuniform lattice structures (see also [21] ), where
each gate in a universal set of unitary gates can be imple-
mented by local measurements on an elementary unit and
these units are combined (bottom-up approach). Here we
use a different approach, where we prove universality by
explicitly constructing LOCC protocols that yield the 2D
cluster state (top-down approach). The proofs are based on
successive applications of simple rules how to update a
graph when applying certain local operations on the cor-
responding graph state [11], where we only use local
complementation (inversion of neighborhood graph) and
vertex deletion, corresponding to �y and �z measure-

(a) (b)

(c)

3 21

(d)

FIG. 1 (color online). Graph states corresponding to
(a) hexagonal, (b) triangular, and (c) Kagome lattices are uni-
versal for MQC. LOCC transformation from (a) to (d) (2D
cluster) via (b) and (c) is indicated, where simple graph rules
can be used (�y and �z measurements are displayed by � and �,
respectively).

PRL 97, 150504 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 OCTOBER 2006

150504-3



ments, respectively. Note that the square 2D lattice, to-
gether with the hexagonal and triangular lattices, are the
only possibilities to obtain a regular tiling of the 2D plane.
Furthermore, the Kagome lattice is an example of a uni-
form semiregular 2D tiling with 2 basic tiles (the triangle
and the hexagon). The hexagonal lattice has vertex degree
3, which leads to an increased robustness against local
noise as compared to the 2D cluster state [22].

So far we have demanded that LOCC succeed with unit
success probability in order to call a family of states
universal. One may also define weak universality of a
family of states by considering probabilistic transforma-
tions rather than deterministic ones. A family of states is
called a weak universal resource if an arbitrary unitary
transformation can be implemented with probability p� �
1� � for any � > 0. One can follow the same approach as
in the deterministic case, where one has to replace LOCC
by stochastic LOCC (SLOCC). However, some care is
required, in particular, when formulating necessary con-
ditions for weak universality in terms of entanglement
measures. For instance, any family of states that allows
one to implement an arbitrary unitary operation with some
(arbitrary small) nonzero probability of success becomes
weakly universal when considering an extended family
containing many copies of each of the states, even though
the value of certain entanglement measures (e.g., maximal
localizable entanglement ELab) is strictly smaller than for
k� k cluster states. A proper necessary condition can be
formulated by considering SLOCC orbits of all states
within a given family. Any entanglement measure, whose
maximum value on the orbits of all states of the family is
smaller than for the k0 � k0 cluster state for some k0,
allows one to deduce that the family is not a weak universal
resource.

It is straightforward to obtain examples of nongraph
states that are weak universal resources. Consider the
family of states defined by deformed cluster states,
j k�ki / �	k

2
jCk�ki with � � diag �1; �� and � < 1, i.e.,

these states can be probabilistically obtained from the 2D
cluster state by applying local filtering operations. The
inverse transformation is also possible; however, the suc-
cess probability is exponentially small. Nevertheless, a
single copy of a state in this class is weakly universal
when � lies above a certain threshold. To see this, note
that one can deterministically transform a state j k�ki by
means of LOCC into a graph state corresponding to a
2D lattice with defects, by applying local 2-outcome
measurements described by f��1 � diag ��; 1�;��1 �

diag �
���������������
1� �2
p

; 0�g at each qubit. One finds that the defect
probability pdef � �1� �2�=�1� �2� is independent of the
system size, and for � > �0 
 0:98 one can indeed show
that the resulting resource is still weakly universal. This
corresponds to a percolation-type effect, and one can ex-
pect weak universality also for smaller values of �.

Conclusion and outlook.—In this Letter we have ana-
lyzed universality of resources for MQC and the role of
entanglement in this context. We have shown that the
entanglement width must diverge on any universal re-
source, and that all three regular tilings of the 2D plane
are universal. A more detailed discussion about weak
universality, simulations with nonunit accuracy, as well
as efficiency of the simulation, will be reported elsewhere.
Finally, we note that there is a close connection between
unboundedness of entanglement width of graph states and
undecidability of (monadic second-order) logic. This con-
nection will also be published in forthcoming work.
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