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We study the resonance (or Gamow) eigenstates of open chaotic systems in the semiclassical limit,
distinguishing between left and right eigenstates of the nonunitary quantum propagator and also between
short-lived and long-lived states. The long-lived left (right) eigenstates are shown to concentrate as @! 0
on the forward (backward) trapped set of the classical dynamics. The limit of a sequence of eigenstates
f �@�g@!0 is found to exhibit a remarkably rich structure in phase space that depends on the corresponding
limiting decay rate. These results are illustrated for the open baker’s map, for which the probability
density in position space is observed to have self-similarity properties.
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In closed systems, the two most fundamental semiclas-
sical properties are that the mean density of states is given
by the Weyl law [1], which associates with each quantum
state a Planck cell in the available region of phase space,
and that in classically chaotic systems the stationary states
have Wigner functions which are semiclassically uniform
over the energy shell [2], in agreement with the quantum
ergodicity theorem [3]. It is remarkable that it is still not
known, in general, how these fundamental properties ex-
tend to open (scattering) systems.

In open systems, the lack of unitarity of the quantum
propagator gives rise to nonorthogonal decaying eigen-
states with complex energies (resonances), the imaginary
parts of which are interpreted as decay rates. In the case of
open chaotic systems, the classical mechanics is structured
in phase space around fractal sets associated with trajecto-
ries that remain trapped for infinite times, either in the
future (forward-trapped set K�) or in the past (backward-
trapped set K�). The mean density of resonances is be-
lieved (but not, in general, proved) to be determined by the
fractal dimension of the invariant set K0 � K� \ K�, the
classical repeller. This is the fractal Weyl law [4–6]. (Note
that this is different to the resonance statistics in weakly
open systems, for which the size of the opening vanishes in
the semiclassical limit [7].)

Much less is known about the resonance (or Gamow)
eigenstates. These are important in many areas of physics
[8] and chemistry [9], because they have a marked influ-
ence on observable quantities such as scattering cross
sections and reaction rates (they are a component of the
Siegert pseudostates basis in terms of which the scattering
wave functions and S matrix, for example, can conven-
iently be expanded [8]). Following the well established
idea that in the semiclassical limit time-independent quan-
tum properties should be related to time-independent clas-
sical sets, it is natural to expect that long-lived eigenstates
of open systems should be determined by the structure of
K� and K�. This was tested numerically for some right
eigenstates of the open kicked rotator in Ref. [10], where
the term ‘‘quantum fractal eigenstates’’ was coined.

We here significantly extend the notion of quantum frac-
tal eigenstates in several new directions. First, we draw the
important distinctions between left and right eigenstates
of the nonunitary propagator and between states that are
‘‘short-lived’’ and ‘‘long-lived’’ with respect to the
Ehrenfest time. Second, we show that in the semiclassical
limit the long-lived left eigenstates concentrate on K�,
while the long-lived right eigenstates concentrate on K�.
In chaotic systems, the eigenstates thus inherit the intricate
fractal structure of the underlying classical trapped sets
(this property has also been observed by Nonnenmacher
and Rubin [11]). Third, we find that in the semiclassical
limit the eigenstates have a rich structure that reflects the
self-similarity of the sets K� and depends explicitly on the
limiting decay rate. A semiclassical formula is derived for
the weights of the quantum eigenstates in different regions
of phase space. This formula is consistent with the numeri-
cal results of Ref. [10] in the special case when the decay
rate is equal to the classical escape rate.

We illustrate our results for an open quantum baker’s
map. In this system, we have, in addition, that in the
semiclassical limit long-lived right eigenstates have fractal
support in momentum space and are self-similar in position
space (and vice versa for left eigenstates). Finally, we
discuss a system, the Walsh-quantized baker’s map, for
which exact results corroborate our arguments.

Many recent studies of open quantum systems have
focused on maps of the torus T, viewed as a phase space,
which is opened by removing a strip parallel to the mo-
mentum direction [5,12–15]. A physical motivation is the
‘‘bounce map’’ defined for billiards, in which case the
opening corresponds to attaching a perfect lead to the
billiard. The quantization of the classical map U is a
unitary matrix U, acting on a Hilbert space of dimension
N. For torus maps, this dimension plays the role of an
effective Planck’s constant @ � �2�N��1, and the semi-
classical limit thus corresponds to N ! 1. If the opening
O occupies a fractionM=N of the total area in phase space,
then quantum mechanically the open map corresponds to a
nonunitary matrix ~U � U�, where � is a projector onto
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the complement of the opening. The result of multiplying
by � is to set M columns of U equal to zero. Since the
matrix ~U is not unitary, we must distinguish between its
left and right eigenstates:

 

~Uj�R
n i � znj�R

n i; h�L
n j ~U � znh�L

n j: (1)

We will assume h�L
n j�

L
n i � h�

R
n j�

R
n i � 1. The eigenval-

ues zn lie inside the unit circle in the complex plane jznj2 �
e��n � 1, where �n � 0 is the decay rate. (Note that these
are not scattering states, for which fractality has also been
observed [16].)

If Om �Um�O� denotes the mth image of the opening
under the classical map, the forward-trapped and
backward-trapped sets are defined, respectively, as

 K� � T n
[1

m�0

O�m; K� � T n
[1

m�1

Om: (2)

Let us also define the set of points which fall into the
opening after m steps, but not earlier:

 R m
� � fx 2 O�m; x =2 O�n; 0 � n <mg: (3)

We also define Rm
� � fx 2 Om; x =2 On; 1 � n <mg for

m> 1 and R1
� � O1. These sets are related by

 U�1�Rm
�� nO �Rm�1

� ; U�Rm
� nO� �Rm�1

� ;

(4)

with the convention that R0
� � O.

The Ehrenfest time �E plays an important role in quan-
tum chaotic transport [13–15,17], essentially determining
the quantum-to-classical crossover. This is the time it takes
for a minimal wave packet to become larger than the
opening, being therefore partially reflected when leaving
the system. For times shorter than �E, the quantum evolu-
tion of localized states can be approximated by the classi-
cal evolution. For open chaotic maps, �E � ��1 lnM,
where M is the number of ‘‘open channels’’ and � is the
Lyapunov exponent [14,15]. In the semiclassical limit,
quantum states that are essentially supported on some
region A 	Rn

� of phase space will have a deterministic
escape and will thus become eigenstates of ~Un�1 corre-
sponding to eigenvalues that vanish as @! 0. These are
called short-lived states [14,15]. The estimate that the
fraction of such states is 1� e��E=�D , which holds when
the mean dwell time �D � N=M is large, results in the
fractal Weyl law [15]. Short-lived states are intimately
related to the short-time dynamics and are relatively in-
sensitive to the classical trapped sets. In what follows, we
obtain several results for the semiclassical limit of long-
lived eigenstates.

One way to look at the eigenstates is to depict them in
phase space using the Husimi representation, in which one
associates with any eigenstate j��

ni (� � L;R) the func-
tion H�

n�x� � jhxj�
�
nij2, where x � �q; p� is a point of

phase space and jxi is a coherent state. From (1), we

have for the Husimi function of a right eigenstate

 jznj
2mjhxj�R

n ij
2 � jhxj ~Umj�R

n ij
2: (5)

For times much shorter than the Ehrenfest time, the action
of the quantum propagator on coherent states can be ap-
proximated by the classical evolution; in particular, we
have that as @! 0

 � ~Uy�mjxi 
 0 if x 2Rm
�: (6)

Therefore, in the semiclassical limit HR
n becomes negli-

gible on regions Rm
� if jznj> 0 is fixed andm� �E. Since

the Ehrenfest time grows as @! 0, the function must
concentrate on the backward-trapped set K� in this limit,

 HR
n �x� 
 0 if x =2 K� �jznj> 0; @! 0�: (7)

For a finite @, there will be some leakage of jhxj�R
n ij

2 into
the regions Om, mostly for large m. This deviation should
be more pronounced for states with a small lifetime. The
reasoning for long-lived left eigenstates is completely
analogous. In the semiclassical limit, they concentrate on
the forward-trapped set K�.

For finite @, the Husimi functions are not supported on
truly fractal sets, but as @! 0 finer classical structures are
revealed. Continuous time Hamiltonian systems can be
treated in much the same way. One just replaces jznj2m

by e��nT , and the essence of the argument remains. We
thus expect Husimi functions that live on fractal sets in
generic open chaotic systems in the semiclassical limit.

Let us investigate the weight of the eigenstates on differ-
ent regions of phase space. Let �0 be the projector onto the
opening. Our nonunitary propagator then satisfies ~Uy ~U �
1� �0. Hence, we find that the weight of the right eigen-
states in the opening

 h�R
n j�0j�

R
n i � 1� jznj2 (8)

increases with increasing decay rate. Let�m,m � 1, be the
projector onto Rm

� (this is an example of the general class
of projectors introduced in Ref. [18]). For short times, the
semiclassical approximation gives ~Uy�m ~U 
 �m�1, and
thus we obtain the remarkably simple relation

 h�R
n j�mj�

R
n i 
 jznj

2m�1� jznj
2�: (9)

Notice that this vanishes for any fixed m as jznj ! 1; thus,
if the quantum decay rate approaches zero as @! 0, the
corresponding eigenstate becomes localized on the invari-
ant set K0.

It is interesting to note that the distribution of the eigen-
states on phase space depends explicitly on the correspond-
ing decay rate, which we hold fixed as @! 0. This is an
important difference with respect to the case of unitary
evolution, when the semiclassical limit is the same for
almost all sequences of eigenstates f �@�g@!0. We also
note that the areas of the regions Rm

� are proportional to
e�m�c , where �c is the classical escape rate. Therefore, the
prediction in Ref. [10] that a right eigenstate of an open
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quantum map with �n 
 �c should be constant (up to
quantum fluctuations) over the classical set K� is consis-
tent with our expression.

We now illustrate our results in a paradigmatic model of
quantum chaos, the baker’s map, which is particularly
convenient because of the relatively simple structure of
its trapped sets. Its triadic form is defined as

 U �q; p� �

8><
>:

�3q; p3� if 0 � q < 1
3 ;

�3q� 1; p�1
3 � if 1

3 � q < 2
3 ;

�3q� 2; p�2
3 � if 2

3 � q < 1:
(10)

This system is uniformly hyperbolic, with Lyapunov ex-
ponent � � ln3. The stable and unstable manifolds are
parallel to the momentum and position axes, respectively.
Its quantization is given by [19]

 UN � F�1
N diag�FN=3; FN=3; FN=3�; (11)

where the subscript denotes the dimension of the matrix.
FN is a modified Fourier transform �FN�nm �
�1=

����
N
p
�e��2�i=N��n�1=2��m�1=2�, with the integers n and m

running from 0 to N � 1. The ‘‘1=2’’ factors are necessary
in order to impose parity on the eigenstates. This form of
the matrix FN leads to antiperiodic boundary conditions.

An open version of this system was introduced in
Refs. [5,12], in the context of the fractal Weyl law, where
the opening was taken as the middle vertical strip (see also
Ref. [20], where a closely related map was studied). To find
the forward-trapped set K�, one may consider the back-
ward propagation of this strip, and it is not difficult to see
that the only points that remain are those belonging to
Can� 
0; 1�, where ‘‘Can’’ denotes the usual middle-third
fractal Cantor set. The backward-trapped set K� is 
0; 1� �
Can. Details of this construction can be found in
Refs. [5,12]. The open quantum system is obtained by
setting the middle third of the columns of UN , correspond-
ing to the strip, equal to zero. The kinematics is such that
the position representation of right eigenstates is equal to
the momentum representation of left eigenstates.

In Fig. 1, we plot the average of HR
n �q; p� over the 100 -

longest-lived states, for the case N � 37. We see that it is
reasonably concentrated on the backward-trapped set,
although it is not able to resolve this set on the finest scales.
More details of K� should be revealed for larger values of
N. The right panel in Fig. 1 shows the averaged Wigner
function, and we see that it resolves K� with considerably
greater accuracy.

In Fig. 2, we plot the weight of right eigenstates on the
regions Rm

�, for N � 36. The solid lines represent the
semiclassical approximation (9). We see that the agree-
ment is rather good, particularly for small eigenvalue
modulus and small values of m.

Let us now turn our attention to wave functions in
position or momentum space. For the baker’s map, the
projection of K� onto momentum space is just the
Cantor set, and the momentum representation of any

long-lived right eigenstate must be supported on this fractal
dust. In Fig. 3, we plot j�R�p�j2, averaged over the 25 -
longest-lived states, for N � 37. The fractal nature of the
support, within the 1

N resolution set by the uncertainty
principle, is evident from the magnification by a factor of
3. In Fig. 4, we plot jhqj�Rij2 averaged over a few right
eigenstates, again for N � 37. Figures 4(a) and 4(b) corre-
spond to a relatively large decay rate, while Figs. 4(c) and
4(d) correspond to a smaller one. Within the available
resolution, both functions are remarkably self-similar, as
can be appreciated from the magnifications. This observa-
tion is consistent with our theory [cf. (9)].

Nonnenmacher and Zworski have recently introduced a
simplified version of the open quantum baker’s map, based
on the ‘‘Walsh-Fourier’’ transform, that can be solved
explicitly [12]. For this system, several of the results
presented here are exact and can be rigorously proven.
One particular feature is that the difference between
short-lived and long-lived states is well defined. The for-
mer all have exactly null eigenvalue, and the phase space
representation of the latter vanishes outside the finitely
resolved relevant trapped set. Equations (6) and (9) are
exact for this system. We have also shown that self-similar
properties analogous to those illustrated by Fig. 4 can be
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FIG. 1 (color online). Left panel: The average of the Husimi
functions of the 100 longest-lived right eigenstates of the baker’s
map, for N � 37 (intensity increases from blue to red). Right
panel: The corresponding Wigner function average (in the white
regions, the function is nonpositive). Note that the @ scale is
1=N 
 0:005.
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FIG. 2 (color online). The weight h�R
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n i of right eigen-

states of the baker’s map on the regions Rm
�, for N � 36. The

solid line is the semiclassical approximation (9).
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established rigorously and that—after either a spatial av-
erage or a spectral average—the probability density of
long-lived right eigenstates in the momentum representa-
tion becomes constant on the Cantor set as N ! 1 (for the
standard quantization, this is suggested by Fig. 3). A de-
tailed account will be presented elsewhere [21].

In summary, we have shown that in the semiclassical
limit resonance eigenstates of open chaotic systems con-
centrate on classical fractal trapped sets. We have derived a
formula for their distribution on different areas of phase
space that depends explicitly on the quantum decay rate.

For the baker’s map, we have also found that the position
and momentum representations of wave functions exhibit
self-similarity.
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FIG. 4. Probability density in position space for right eigen-
states jhqj�Rij2, averaged over states with similar decay rates.
(b) and (d) are magnifications of (a) and (c). The average
eigenvalue modulus is approximately 0.4 for (a),(b) and 0.7 for
(c),(d). In both cases, the self-similarity is striking. N � 37.
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FIG. 3. Probability density in momentum space for right ei-
genstates jhpj�Rij2, averaged over the 20 longest-lived states
(eigenvalue modulus ranging from 0.90 to 0.83). This function is
approximately supported on the Cantor set, as can be seen from a
magnification by a factor of 3 (right panel). N � 37 and so the @

scale is 1=N 
 0:005.

PRL 97, 150406 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 OCTOBER 2006

150406-4


