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We consider either 3 spinless bosons or 3 equal mass spin-1=2 fermions, interacting via a short-range
potential of infinite scattering length and trapped in an isotropic harmonic potential. For a zero-range
model, we obtain analytically the exact spectrum and eigenfunctions: for fermions all the states are
universal; for bosons there is a coexistence of decoupled universal and efimovian states. All the universal
states, even the bosonic ones, have a tiny 3-body loss rate. For a finite range model, we numerically find
for bosons a coupling between zero angular momentum universal and efimovian states; the coupling is so
weak that, for realistic values of the interaction range, these bosonic universal states remain long-lived and
observable.
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With a Feshbach resonance, it is now possible to produce
a stable quantum gas of fermionic atoms in the unitary
limit, i.e., with an interaction of negligible range and
scattering length a � 1 [1]. The properties of this gas,
including its superfluidity, are under active experimental
investigation [2]. They have the remarkable feature of
being universal, as was tested, in particular, for the zero
temperature equation of state of the gas [3]. In contrast,
experiments with Bose gases at a Feshbach resonance
suffer from high loss rates [4–6], and even the existence
of a unitary Bose gas phase is a very open subject [7].

In this context, fully understanding the few-body unitary
problem is a crucial step. In free space, the unitary 3-boson
problem has an infinite number of weakly bound states, the
so-called Efimov states [8]. In a trap, it has efimovian states
[9,10] but also universal states whose energy depends only
on the trapping frequency [9]. Several experimental groups
are currently trapping a few particles at a node of an optical
lattice [11] and are controlling the interaction strength via a
Feshbach resonance. Results have already been obtained
for two particles per lattice node [12], a case that was
solved analytically [13]. Anticipating experiments with 3
atoms per node, we derive in this Letter exact expressions
for all universal and efimovian eigenstates of the 3-body
problem for bosons (generalizing [9] to a nonzero angular
momentum) and for equal mass fermions in a trap. We also
show the long lifetime of the universal states and their
observability in a real experiment, extending to universal
states the numerical study of [10].

If the effective range and the true range of the interaction
potential are negligible as compared to the de Broglie
wavelength of the 3 particles, the interaction potential
can be replaced by the Bethe-Peierls contact conditions
on the wave function  : it exists a function A such that

  �r1; r2; r3� �
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�
A�Rij; rk� �O�rij� (1)

in the limit rij � jri � rjj ! 0 taken for fixed positions of
the other particle k and of the center of mass Rij of i and j.

In the unitary limit considered in this Letter, a � 1. When
all the rij are nonzero, the wave function  obeys the
noninteracting Schrödinger equation
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! is the oscillation frequency and m the mass of an atom.
To solve this problem, we extend the approach of

Efimov [8,14] to the trapped case, and obtain the form

  �r1;r2;r3�� c:m:�C�F�R��1�Q̂�
1

r�
’���Yml ��=��: (3)

Since the center of mass is separable for a harmonic trap-
ping, we have singled out the wave function  c:m:�C� of its
stationary state of energy Ec:m:, with C��r1�r2�r3�=3.
The operator Q̂ ensures the correct exchange symmetry of
 : for spinless bosons, Q̂ � P̂13 � P̂23, where P̂ij trans-
poses particles i and j; for spin-1=2 fermions, we assume a
spin state "#" so that Q̂ � �P̂13. The Jacobi coordinates are
r � r2 � r1 and � � �2r3 � r1 � r2�=

���
3
p

. Yml is a spheri-
cal harmonic, l being the total internal angular momentum
of the system. The function ’���, where � � arctan�r=��,
solves the eigenvalue problem

 � ’00��� �
l�l� 1�

cos2�
’��� � s2’��� (4)

 ’��=2� � 0 (5)

 ’0�0� � ���1�l
4���
3
p ’��=3� � 0 (6)

with � � �1 for fermions, � � 2 for bosons. An analyti-
cal expression can be obtained for ’��� [15], which leads
to the transcendental equation for s [16]:
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with the notation �x�n � x�x� 1� . . . �x� n� 1�. This
equation is readily solved numerically: for each l, the
solutions form an infinite sequence �sl;n�n�0, see Fig. 1.
As we show below, all solutions are real, except for bosons
in the l � 0 channel, where a single purely imaginary
solution exists, sl�0;n�0 � s0 ’ i� 1:00624, the well-
known Efimov solution. Finally, the function F�R�, where

the hyperradius is R �
�������������������������
�r2 � �2�=2

p
, solves the problem:
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F�R� � �E� Ec:m:�F�R�;

(8)

where U�R� � @
2s2=�2mR2� �m!2R2=2, s being one of

the sl;n. This is the Schrödinger equation for a fictitious
particle of zero angular momentum moving in two dimen-
sions in the potential U�R�.

When s2 > 0, one takes s > 0 and the solution is

 F�R� � Rse�R
2=2a2

hoL�s�q �R2=a2
ho� (9)

where aho � �@=m!�1=2 is the harmonic oscillator length,
L�	�q is the generalized Laguerre polynomial of degree q, q
being an arbitrary non-negative integer. The resulting spec-
trum for the 3-body problem is

 E � Ec:m: � �sl;n � 1� 2q�@!: (10)

The quantum number q leads to a semi-infinite ladder
structure of the spectrum with a regular spacing 2@!.
This is related to the existence of a scaling solution for
the trapped unitary gas [17] and the subsequent embedding
of the Hamiltonian in a SO�2; 1� algebra [18], leading to an
exact mapping between trapped and free space universal
states [19].

When s2 < 0, as is the case in the l � n � 0 channel for
bosons, the Schrödinger equation [Eq. (8)] does not define

by itself a Hermitian problem and has to be supplemented
by a boundary condition for R! 0 [20,21]:

 F�R� / Im
��
R
Rt

�
s0
�
; (11)

where Rt is an additional 3-body parameter. For the result-
ing efimovian states, the function F is given by

 F�R� � R�1W�E�Ec:m:�=2@!;s0=2�R
2=a2

ho�; (12)

where W is a Whittaker function, and the energy solves:
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(13)

We did not yet obtain all the 3-body eigenstates [22].
Indeed, all the above states satisfy the contact condition (1)
with a nonzero function A. But there are wave functions of
the unitary gas which vanish when two particles are at the
same point; these are also eigenstates of the noninteracting
case. An example is the Laughlin state of the fractional
quantum Hall effect [23]:
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��xn � iyn� � �xm � iym��j�j:

(14)

In the limit of high energies E @!, there are actually
many of these A � 0 states: their density of states (DOS) is
almost as high as the DOS of the noninteracting case:
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In contrast, the DOS of the A � 0 states is only
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Equation (16) is a consequence of Eq. (17) given below.
We found Eq. (15) by applying the rank theorem to
the operator  0�r1; r2; r3�� � 0�r1; r1; r3�;  0�r1; r2; r1�;
 0�r1; r2; r2�� which associates, to each noninteracting ei-
genstate  0 of energy E, 3 functions of 2 atomic positions,
and whose kernel is the space of A � 0 states of energy E
[24].

This completes our derivation of all eigenstates of the
unitary 3-body problem in a trap. Three types of states are
obtained in general: universal eigenstates common to the
noninteracting case, universal interacting states, and efi-
movian states depending on a 3-body parameter.

We now prove that the Efimov effect is absent for 3 equal
mass fermions. This fact is known but to our knowledge
not demonstrated. Numerically one can only check the
absence of imaginary solution of the transcendental equa-
tion in some finite interval of s and l. Here we prove that for
any l and any imaginary s, there is no solution to the

0 1 2 3 4 5
l

0

4

8

12

16

0 1 2 3 4 5
l

0

4

8

12

16

s l,n

(a) (b)

FIG. 1. The constants sl;n for (a) 3 equal mass fermions and
(b) 3 bosons, obtained by numerical solution of the transcen-
dental equation [Eq. (7)]. We have not represented the sl�0;n�0

solution for bosons, which is purely imaginary. According to
Eq. (10), each real sl;n gives rise to a semi-infinite ladder of
universal states. Note that the ground universal state has a total
angular momentum l � 1 for fermions (E ’ 4:27@!) and l � 2
for bosons (E ’ 5:32@!).
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problem (4)–(6). Let us assume that s2 
 l�l� 1�, and that
(4) and (5) are satisfied. We will show that the quantity
Q�l; s2� � ’0�0� � ��1�l�4=

���
3
p
�’��=3� is nonzero, which

is incompatible with (6). We rewrite (4) as ’00��� �
u���’���. This is Newton’s equation, � being the time
and ’ the position of a fictitious particle subject to an
expelling harmonic force with time dependent spring con-
stant u��; l; s2� � l�l�1�

cos2� � s
2 � 0. Equation (5) imposes

that this particle reaches the origin at ‘‘time’’ �=2. The
particle then should not reach the origin earlier, otherwise
the expelling force would prevent it from turning back to
’ � 0. We thus can take the normalization ’�0� � 1,
which implies ’0�0�< 0 and ’���> 0 for 0 
 �<�=2.
Thus, Q�l; s2�< 0 for l even. For l odd, one needs two
intermediate results: (i) Q�l � 1; s2 � 2�< 0 (which we
check by explicit calculation); (ii) if ’1, ’2 are two solu-
tions with u2 � u1, then ’2 
 ’1, and Q2 
 Q1: because
the spring constant for particle 2 is larger, particle 2 has to
start faster and walk constantly ahead of particle 1 in the
race towards the origin to satisfy Eq. (5). Now the assump-
tion s2 
 l�l� 1� implies u��; l; s2� � u��; l � 1; s2 �
2�. One concludes that: Q�l; s2� 
 Q�l � 1; s2 � 2�< 0.
For bosons, we proved similarly that all the s2 are positive,
except for the well-known sn�0;l�0 ’ i� 1:00624.

It appears clearly in Fig. 1 that sl;n gets close to an
integer value �sl;n as soon as l or n increases, with

 

�sl;n � l� 1� 2n for l � j�j
�sl;n � 2n� l� �2�� 11�=3 for l < j�j

: (17)

To check this analytically, the transcendental equation is
not useful. We rather applied semiclassical WKB tech-
niques to the problem (4)–(6), and obtained [25]:

 sl;0 � �sl;0 �l!1 ���1�l�121�l=
��������
3�l
p

(18)

 sl;n � �sl;n �n!1 � cos
�
�
3
�l� 1� n�

�
��1�l�n�14

�
���
3
p
n

(19)

 max
n
jsl;n � �sl;nj �l!1 j�j

4Aimax

37=12�1=2
l�5=6 (20)

with Aimax ’ 0:5357 the maximum of the Airy function.
We now discuss the lifetime of the 3-body states found

here in the trap, due to 3-body recombination to a deeply
bound molecular state. The recombination rate is com-
monly estimated as �loss / P@=�m�

2�, where � is the
range of the interaction potential, and P is the probability
that R<� [26]. Evaluating P from the 3-body wave
functions obtained above for the zero-range model, this
gives for E not much larger than @!:

 �univ
loss / !

�
�
aho

�
2s

(21)

for a universal state with exponent s, and �efim
loss / ! for an

efimovian state. Since s � 1:77 for fermions and s � 2:82

for bosons (Fig. 1), Eq. (21) indicates that the lifetime of
universal states is 1=! for �� aho.

The existence of long-lived bosonic states is an unex-
pected feature that we now investigate in a more realistic
way. The unitary three-body problem in an isotropic har-
monic trap may be realized experimentally by trapping 3
atoms at a site of a deep optical lattice, and using a
Feshbach resonance. For a broad Feshbach resonance, the
effective range is of the order of the van der Waals length,
which is roughly 1 order of magnitude smaller than aho for
a usual lattice spacing of �0:5 �m and a lattice depth of
�50 recoil energies. This experimental situation is not
deeply in the asymptotic regime of a zero-range potential.
Moreover, in the zero-range model, there are energy cross-
ings between universal and efimovian states as a function
of Rt=aho [see solid lines in Fig. 2(a)]; as we shall see, for a
finite range, there is a coupling between l � 0 universal
and efimovian states, leading to avoided crossings [27],
and to an additional contribution to the loss rate of l � 0
universal states not included in Eq. (21).

We therefore solve a finite interaction range model, the
Gaussian separable potential of range � [10], defined as

 hr1;r2jVjr01;r
0
2i��

@
2

2�3=2m�5
e��r

2
12�r

02
12�=2�2

��R12�R012�:

(22)

This leads to an integral equation that we solve numeri-
cally. In Fig. 2(a), we show two l � 0 energy branches as a
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FIG. 2. Numerical solution of the separable potential model:
(a) 3-body eigenenergies and (b) predicted 3-body loss rates (for
the case of 133Cs, see text), as a function of the potential range �
(lower axis) and the 3-body parameter Rt (upper axis) [29].
(a) The lowest energy universal branch ( � ) and an efimovian
branch (�) have a very weak avoided crossing (inset). The
analytical predictions of the zero-range model (solid lines) are
in good agreement with the numerics (except for the avoided
crossing); a linear extrapolation of the stars to � � 0 matches
the zero-range result at the 10�3 level. (b) The universal states
have a loss rate much smaller than !.
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function of�, corresponding in the zero-range model to the
lowest l � 0 universal state and to an efimovian branch.
The smallness of the avoided crossing between the two
branches shows that the coupling due to the finite range of
the interaction is weak: the energy splitting at the avoided
crossing is @� ’ 0:01@!, see inset of Fig. 2(a).

We now revisit the calculation of the 3-body loss rate for
bosons, since Eq. (21) neglects the contamination of the
universal state by the efimovian state. To account for the
losses we add to the Hamiltonian Hsep of the separable
potential model an anti-Hermitian part leading to the ef-
fective Hamiltonian in second quantized form

 Heff � Hsep � iB3
@

2�4

12m

Z
� y� ~r��3� � ~r��3d~r; (23)

where B3 is a numerical factor, whose actual value depends
on short-range atomic and molecular physics. Specializing
to 133Cs, we adjust the parameters of our model to B3 � 25
and � � 6:5 nm in order to reproduce the three-body loss
rate measured in a noncondensed gas for several negative
values of a in [5]. To obtain the loss rates shown in
Fig. 2(b), we restricted Heff to the two branches of
Fig. 2(a): the eigenvalues of the resulting 2� 2 matrix
have complex parts �i@�loss=2. For the efimovian states,
�loss ’ 0:07!. For the universal states �loss is several or-
ders of magnitude smaller; this remains true on the avoided
crossing, because the coupling �=2 of the universal state to
the efimovian state is much smaller than the decay rate of
the efimovian state [28].

Experimentally, if one starts with the noninteracting
ground state, a superposition of 3-body unitary eigenstates
can be prepared by switching suddenly the scattering
length from zero to infinity. The Bohr frequencies in the
subsequent evolution of an observable would give infor-
mation on the 3-body spectrum. For bosons, there will
be a finite fraction of the sites where the three atoms
have a long lifetime. This fraction is equal to the proba-
bility of having populated a universal state, which we
calculate to be ’0:174, a value dominated by the contri-
bution (’0:105) of the lowest l � 0 universal state.

In summary, we obtained the complete analytical solu-
tion of a zero-range unitary 3-body problem in a trap. For
bosons, there are efimovian and universal states, while for
equal mass fermions we proved that all states are universal.
All universal states are stable in the zero-range limit with
respect to 3-body losses, not only for fermions, but also for
bosons. From the numerical solution of a finite range
model, we find that, although the bosonic universal states
of zero angular momentum slightly mix with the efimovian
states, their lifetime remains much larger than the oscilla-
tion period in the trap.

We thank L. Pricoupenko, D. Petrov, T. Köhler, A.
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