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The initial value problem solution of the nonlinear shallow water-wave equations is developed under
initial waveforms with and without velocity. We present a solution method based on a hodograph-type
transformation to reduce the nonlinear shallow water-wave equations into a second-order linear partial
differential equation and we solve its initial value problem. The proposed solution method overcomes
earlier limitation of small waveheights when the initial velocity is nonzero, and the definition of the initial
conditions in the physical and transform spaces is consistent. Our solution not only allows for evaluation
of differences in predictions when specifying an exact initial velocity based on nonlinear theory and its
linear approximation, which has been controversial in geophysical practice, but also helps clarify the
differences in runup observed during the 2004 and 2005 Sumatran tsunamigenic earthquakes.
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The initial value problem (IVP) of the shallow water-
wave equations is one of the classic exercises of applied
mathematics with literally useful and specific applications
in coastal hydrodynamics. For example, when calculating
numerically the coastal evolution of tsunamis, the seafloor
displacement is used to specify the initial condition for the
free surface [1–3]. While analytical solutions for mono-
chromatic waves have been available since the mid-1950s
[4], analytical solutions for complex waveforms such as
solitary waves for the canonical problem—a uniformly
sloping beach connected with a constant-depth seg-
ment—were only proposed in the late 1980s [5]. These
solutions and their asymptotic approximations have al-
lowed for the validation of numerical codes that predict
the shoreline evolution, an otherwise vexing computation
[3,6]. Other than for a very mild angle of incidence [7], all
existing methods are one-dimensional. For a more com-
plete discussion of tsunami hydrodynamics, refer to
Ref. [8].

Recently, Ref. [9] developed a Green’s function repre-
sentation of the solution of an IVP of the nonlinear shallow
water-wave (NSW) equations. Linearizing the spatial vari-
able x in the definition of the initial wave, Ref. [9] de-
scribed a solution for an initial profile with and without
initial velocity, employing numerical integration, satisfac-
tory only for small initial amplitudes, when there is non-
zero initial velocity. More recently, Ref. [10] used the
original transformation presented by Ref. [4], known as
Carrier-Greenspan (CG) transformation, to solve an IVP
without initial velocity. References [9,10] use the same
approximation in the spatial variable to facilitate specifi-
cation of initial values.

We will suggest a new formulation which appears
mathematically more consistent for specifying the IVP
for finite initial amplitude with nonzero initial velocity

unlike Ref. [9]. We will briefly discuss the formulation of
Ref. [9] to clarify its applicability compared with the new
solution. Then we will present some geophysical implica-
tions using the new formulation.

The two-dimensional NSW equations that describe a
propagation problem over the undisturbed water of vari-
able depth h0�x� � x [Fig. 1] are �u�h0 � ���x � �t � 0
and ut � uux � �x � 0, in nondimensional form. Here
u�x; t� and ��x; t� are the horizontal depth-averaged veloc-
ity and free-surface elevation, respectively. A reference
length ~l is used as a scaling parameter, and dimensionless
variables are introduced as x � ~x=~l, h0 � ~h0=�~l tan��,
� � ~�=�~l tan��, u � ~u=�~g ~l tan��1=2, and t �
~t=�~l=�~g tan���1=2, where � and ~g are the beach angle
from the horizontal and the gravitational acceleration,
respectively. Reference [9] used the following transforma-
tion:
 

x � �2 � �; (1a)

t � �� u; (1b)

enabling the transform of the NSW equations into
 

��2u�� � 2� � � 0; (2a)

u� �
1

2�
 � � 0; (2b)

η(x,t=0) 

h
0
(x)=x 

X 

Y 

β 

FIG. 1. Definition sketch. Not to scale.
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defining a potential function as  � �� 1
2 u

2. Moreover,
Ref. [9] reduced (2a) and (2b) into the following partial
differential equation (PDE):

 4� �� � �� ��� � 0: (3)

u is defined through (2b) as u� � � �=2�. However,
Ref. [9] did not pursue this transformation.

We consider (3) and general initial conditions in the
physical space, i.e., ��x; t � 0� � �0�x� and u�x; t � 0� �
u0�x� at t � 0. The transformation for the temporal vari-
able (1b), t � �� u results directly into � � �0 �
�u0�x�when t � 0. Then�0�x� and u0�x� can be converted
to the forms �0��� and u0��� using the linearized form of
the transformation (1a) x � �2. Initial conditions are now
defined as  ��;�0� � �0��� �

1
2u

2
0��� from the definition

of the potential function and  ���;�0� � �u0��� �
1
2�u0���� from (2a). Given �0�x�, the initial velocity can
be approximated by u0�x� � ��0�x�=

���
x
p

; we will later
discuss the implications of using this linear approximation.
The minus sign ensures the initial wave propagates on-
shore. Thus, given the initial conditions  ��;�0� and
 ���;�0�, then the Hankel transforms give the following
solution:

  ��; �� � 2
Z 1

0
� ��; �0�G� �  ���; �0�G�d�; (4)

where G��; �; ��� � �
R
1
0 J0�!��J0�!�� sin�12!

���d!,
with �� � �� �0. The new solution requires one additional
integration for the evaluation of u��; �� from (2b), u� �
� �=2�, allowing direct removal of the singularity at the
shoreline using lim�!0�J1�!��=�� �

1
2!.

Once our solution is obtained in the transform space
using (4), it can be converted to the solution in the physical
space through (1a) and (1b). Newton-Raphson iterations
can be used to obtain a solution at any particular location x	

or any particular time t	 as in Refs. [5,10].
Carrier et al. [9] pursued (2a) and (2b) with another

potential function, ’� � �� 1
2u

2. They ended up again
with the same PDE as (3) for ’; 4�’�� � ��’��� � 0.
Given u � �’�=2� and their definition of the poten-
tial function, the initial conditions are ’��; 0� �
�
R
�
0 2�u��; 0�d� and ’���;0���0����

1
2u

2
0���, where

�0��� and u0��� are the initial wave and velocity profiles
in the transform space, respectively. Reference [9] derived
the solution ’��; �� � 2

R
1
0 �’��; 0�G� � ’���; 0�G�d�,

with G��;�;����
R
1
0 J0�!��J0�!��sin�12!��d!, which

they evaluated in terms of a complete elliptic integral of
the first kind, with an essential singularity at � � 1

2�� �.
We differ with the supposition of Ref. [9] that no ap-

proximation is needed when specifying their ’��; 0� and
’���; 0�. Initial conditions may be known in the �x; t�
space, but their implementation requires their definition
in the ��;�� space. Given initial conditions ��x; 0� and
u�x; 0� at t � 0,  ��;�0� and  ���; �0� or ’��; 0� and
’���; 0� can be defined only if it is assumed x � �2.
Indeed, Ref. [9] imposed a Gaussian initial wave profile

in the following manner:

 � � a exp��k�x� x0�
2� � a exp��k��2 � �2

0�
2�; (5)

for �
 x, using in essence the approximation of Ref. [5]
for the boundary value problem (BVP). While it was
claimed [9] that this approximation is made ‘‘simply for
convenience,’’ it was mathematically necessary to imple-
ment initial conditions in the ��; �� space [10]. An ap-
proximation of the CG transformation was first introduced
by Ref. [5], which considered the canonical problem. As
argued by Ref. [11], solving the NSW equations for piece-
wise linear bathymetries is too complex using CG-type
transformations. This difficulty was resolved by [5] incor-
porating the linear theory solution to define a BVP solution
for the nonlinear theory and calculating the linear theory
solution using the [12] formalism at the transition point.
This point is located far off the beach; hence, the nonlinear
effects are locally smaller in comparison to closer to the
shoreline. Consequently, the solution included a reflection
based on the entire wave motion for all times, an unre-
solved issue in the original and later derivative works using
the CG transformation.

In another example, Ref. [9] specified an incident wave
from offshore with u�x; t � 0� � 0, imposed at � � t � 0.
However, given (1b), � must be different than zero when
t � 0 if u�x; t � 0� � 0. One might claim that when u is
small enough, then t � 0 � �, and this might indeed be a
good approximation (as used by Ref. [5] for the BVP
solution), but with our new solution, it is entirely unnec-
essary. No further assumption is needed, and our initial
condition is not specified at t � 0 � � but instead at �0 �
�u0��� corresponding to t � 0.

We note that care is needed when comparing the new
solution (4) with the Ref. [9] solution. The arguments of
the trigonometric functions are proportional to ��� �0� in
(4). One may casually argue that if the initial conditions
 ��;�0� and  ���;�0� are defined with � � �0 � 0 when
t � 0 as in Ref. [9], one will anyway obtain a similar
solution. One can find � which will make t � t	 � 0.
However, the particular � which will make t � t	 � 0 is
not � � 0, and � � 0 does not correspond to t � t	 � 0
when u�x; t � 0� � 0. In short, the Ref. [9] formulation is
not consistent with the initial condition in the physical
space when there is an initial velocity. A comparison of
two cases is presented in Fig. 2. We emphasize that, while
the initial condition for ’��; 0� appears in integral form in
the Ref. [9] solution, in the new solution the initial con-
ditions are defined with a far simpler expression.

In Fig. 3, we present two examples to allow comparison
between our formulation and Ref. [9], using the initial
wave form given in (5) with a � 0:0025 [Fig. 3(a)] and
a � 0:017 [Fig. 3(b)] initial waveheights. In both cases,
the initial waves have velocity approximated with u0�x� �
��0�x�=

���
x
p

. Reference [9] wrote that, since their solution
contains a highly singular function, they were able to
perform a satisfactory numerical computation for a small
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value of the initial wave amplitude. Unlike Ref. [9], we do
not have any difficulty in resolving the entire flow field
with (4), even for large values of initial wave amplitude
[Fig. 3(b)]. We believe a major hindrance with Ref. [9] is
the implementation of one of the initial conditions in the
integral form. In the same figure, we present the time
evolution of a wave with a � 0:017 without an initial
velocity [Fig. 3(c)] and compare shoreline motions for
both cases [Fig. 3(d)], i.e., with and without initial velocity.
There is a difference in the maximum runup of a factor of 2.
This difference suggests strong implications in the model-
ing of landslide-generated waves. Current practice ignores
the time dependence of the generation process, and this
may result in a substantial difference in the predictions of
the maximum runup if the appropriate initial velocity is not
specified.

Carrier et al. [9] observed a small outgoing ‘‘noise’’ and
attributed it to the mismatch caused by the linear approxi-
mation for u0 � ��0=

���
x
p

. While one can approximate
the velocity field u0 � ��0=

���
x
p

[13], one does not need
to and instead can use correct nonlinear value u0 �

��2
���������������
x� �0
p

� 2
���
x
p
� � �2�� 2

������������������
�2 � �0

p
. However, it

may not be always possible to perform satisfactory ana-
lytical computations for each time step. Yet, even using the
‘‘full’’ nonlinear value for the initial wave as with our
methodology, the outgoing wave does not disappear
[Fig. 3(e)].

An unresolved question when initializing geophysical
tsunami forecasting models [1] remains the specification of
the initial velocity. Given that the fault rupture is instanta-
neous compared to the free-surface wave generation
[14,15], the standard practice in numerical modeling has
been to transfer the inferred seafloor displacement to the

free surface and form a well-posed IVP with zero velocity.
Further, current state-of-the-art forecasting methodology
[16] employs superposition. Precomputed farfield ampli-
tude and velocity fields for ‘‘unit’’ tsunamigenic faults for
specific scenario events are linearly combined to provide
initial conditions for local nonlinear inundation models at
high resolution near target coastlines. Given that only a
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FIG. 3. Nonlinear evolution of the initial waveforms defined in
(5) with initial velocity. Cases presented are (a) a � 0:0025,
x0 � 1:69, and k � 4:0 and (b) a � 0:017, x0 � 1:69, and k �
4:0. Initial wave velocities are defined using u0 � ��0=

���
x
p

.
(c) Nonlinear evolution of an initial waveform given in
inset (b) without initial velocity. (d) Comparison of the shoreline
motions for the cases presented in insets (b) and (c), i.e., with
(dashed line) and without (solid line) initial velocity.
(e) Nonlinear evolution at the time t	 � 1 for the case presented
in inset (a). The solid line and the dots represent cases where
initial velocities are defined using a linear approximation and
‘‘full’’ nonlinear value, respectively. (f) A Gaussian (a � 0:017,
xc � 2:00, and k � 4:0) and a leading-depression N wave (pre-
vious Gaussian fronted by a depression with a � 0:0025, xd �
0:9, and k � 4:0) initial forms having the same maximum
amplitudes at the same location. (g) The maximum runup values
for a Gaussian (triangles) and a leading-depression N wave
(circles) for various initial wave locations.
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FIG. 2. Nonlinear evolution of the initial waveforms defined in
(5) with initial velocity with a � 0:017, x0 � 1:69, and k � 4:0.
The solid line and the dots represent time and velocity, respec-
tively. (a) Reference [9]-like solution: Taking � � �0 � 0 in the
present solution produces t � u0. t � 0 unlike Ref. [9] claims.
(b) Proposed solution: t � 0 when � � �0 � �u0 required by
the transformation for the temporal variable (1b).
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handful of free-field tsunami amplitude measurements ex-
ist with no associated initial velocity data, there is con-
troversy as to the adequacy of the linear superposition of
the velocity field.

Next, we are now able to assess the effect of the initial
location of wave crest on a maximum runup. We introduce
a Gaussian and a leading-depression N wave having the
maximum amplitudes at the same location as in Fig. 3(f).
We then vary this initial location and present its effect over
the maximum runup in Fig. 3(g). The runup is seen to vary
almost linearly with the depth. This confirms the specula-
tion (see the maps attributed to Synolakis and Arcas in
Ref. [17]) for the observed substantial differences in in-
undation locally between theMs � 9:3 December 26, 2004
and the Ms � 8:7 March 28, 2005 Sumatra events, which
could not be attributed to the differences in the seismic
moment. While the epicenter of the 2004 event was further
off the shoreline in deeper water, the observed runup
differences cannot be attributed solely to the differences
in depth, at least as suggested from Fig. 3(g). The two
offshore islands of Nias and Simeulue, underneath which
most of the seismic deformation of the 2005 event is
believed to have occurred, limited the volume of fluid
available for tsunamigenesis. Further, Fig. 3(g), which
presents NSW results, confirms the observation of
Ref. [18] based on linear theory, that leading-depression
N waves run up further than leading-elevation N waves of
the same initial height. Note that even the presence of the
small depression wave ahead of the Gaussian affects the
runup to first order.

As recent satellite altimeter data have suggested [19],
the midocean steepness of the 2004 tsunami was less than
10�5. Once the wave arrives at the toe of the beach—
typically of an extent of the order of one wavelength or
less—dispersion is far less important than nonlinearity in
the subsequent nearshore evolution; hence, the NSW the-
ory presented here is applicable. Nonlinear dispersive the-
ory is necessary only when examining steep gravity waves
[20,21], which mercifully are not encountered in the con-
text of tsunami hydrodynamics in deep water but otherwise
at abrupt transitions in depth.

Finally, there are two basic differences in the existing
BVP and IVP solutions of NSW equations. First, the IVP
solutions of Refs. [9,10] do not solve the canonical prob-
lem and need to specify Gaussian or N waves directly on
the sloping beach and then determine their evolution.
Clearly, the representation of an initial wave by approx-
imating the spatial variable x may introduce distortions in
the transform spatial variable �, given the necessary lin-
earization. In fact, Ref. [9] wrote that their specification is
valid for �
 x, some distance offshore. While this does
not appear at first as a drawback, small-amplitude solitary
waves have long wavelengths that may often extend over
the entire length of the sloping beach. The approximations
thus introduced may not be uniformly valid. Second, the
physical problem involves a wave coming from offshore
and then evolving over coastal topography. For example, in

laboratory realizations, solitary waves coming from infin-
ity evolve first over a constant depth and then change
significantly as the waveform propagates over the sloping
beach; see Fig. 9(a) of Ref. [5]. In the BVP analysis, this
difficulty is avoided.

In summary, we described a new method for solving the
IVP of the NSW equations that is consistent with the
definition of the initial condition in the physical and trans-
form spaces with nonzero initial velocity. The proposed
formulation appears simpler than earlier work and also
appears to extend it beyond small initial waveheights
with initial velocities. The differences in runup suggested
from linear theory between leading-elevation and leading-
depression waves persist even in our consistent nonlinear
formulation of the IVP.

Our comparison of solutions with initial velocity speci-
fied through its exact nonlinear value and its linear ap-
proximation suggests that the latter produces a result
almost indistinguishable from the former. This appears to
be one of the reasons that current operational tsunami
forecast models appear to model geophysical reality better
than otherwise expected [16], given the awkwardness of
linearly superposing unitary profiles in a nonlinear model.
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