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Ubiquitous V-Shape Density of States in a Mixed State of Clean Limit Type II Superconductors
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It is demonstrated theoretically and experimentally that the low energy density of states N(E) is
described by a singular V-shape form N(E) = No(H) + a|E| + O(E?) for all clean superconductors in a
vortex state, irrespective of the underlying gap structure. The linear term «|E| which has not been
recognized so far is obtained by exactly evaluating the vortex contribution. Based on microscopic
Eilenberger theory N(E) is evaluated for the isotropic gap, line, and point-node gaps to yield a
V-shape N(E). Scanning tunneling spectroscopy-STM experiments on NbSe, and YNi,B,C give direct
evidence for this. We provide arguments on the significance of this finding and on the relevance to other

experiments.
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Much attention has been focused on exotic supercon-
ductors, ranging from high 7, cuprates, Ce, and U based
heavy Fermion materials, filled skutterdites such as
PrOs,Sb, to cobaltites Na,CoO, - yH,O [1,2]. The iden-
tification of the Cooper-pair symmetry consists of two
parts: its parity and the gap structure. The former is re-
sponsible for the spin structure of a pair which is either
singlet or triplet. This can be probed by directly measuring
the spin susceptibility through a NMR Knight shift experi-
ment under an applied field. The latter gap structure is
related to the orbital symmetry of a Cooper pair. This can
be probed by thermodynamic measurements via a variety
of experimental methods, such as temperature (7') depen-
dence of specific heat C(T'), thermal conductivity «(T), or
nuclear relaxation time 7,(7) in NMR-nuclear quadrupole
resonance experiments.

The basic principle of this identification for the gap
structure is based on the fact that the energy (E) depen-
dence of the density of states (DOS) N(E) near the Fermi
level, which characterizes low-lying excitations of a given
gap structure. This N(E) gives rise to a specific power law
temperature dependence [2]. For example, the line (point)
node gap yields a C(T)/T ~ T(T?) behavior in specific
heat, x(T) ~ T? (T°) for thermal conductivity and T} ' ~
T3 (T°) in nuclear relaxation time at lower T region. This
comes from the fact that the density of states is described
by a specific functional form, N(E) « |E| for line node and
N(E) =« E? for point node, through which a simple power
counting rule yields specific power law indices in various
quantities. Therefore it is decisive to precisely understand
the DOS form N(E) in order to identify the gap structure.
We have attained a lot of information of the pairing sym-
metry in various superconductors in this way [2].

We have realized, however, that there is no detailed
study to investigate ‘‘the general rule” for describing
N(E) in the mixed state of type II superconductor for
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various gap structures [3]. Namely, although the above
thermodynamic measurements are often performed under
an applied field, which is particularly true for 7| in NMR,
one needs to compute the precise functional form of N(E)
in the vortex state for various gap structures.

In the previous theoretical work we studied only the full
gap case and analyzed C(T) at low T [4]. However, this
behavior should be examined with including the contribu-
tion of the gap anisotropy. Usually, experimental data taken
under a field are often analyzed by simply extending the
zero field results discussed above to a finite field (H > 0),
keeping the same power law of N(E) with a finite residual
DOS Ny(H). Namely, it has been implicitly postulated that
N(E) = Ny(H) + a|E|” with y = 0 (U-shape) in the full
gap, ¥ = 1 in the line-node and y = 2 in the point-node
cases. However, these forms of DOS spectrum should be
exactly evaluated by microscopic calculation without am-
biguous assumption. The functional form of the DOS is
important when we discuss the physical quantities in the
mixed state.

Here we calculate the density of states N(E) averaged
over a unit cell of a vortex lattice in type Il superconductors
with full gap, point- and line-node gap structures. Our
microscopic computation takes into account exact quasi-
particle contributions due to vortices, which are not cap-
tured by Ginzburg-Landau and London theories. The
results are of the general form N(E) = Ny(H) + «|E| +
O(E?) for all cases, i.e., v = 1, showing that this singular
V-shape DOS is universal independent of the underlying
original gap structure.

We measured the DOS N(E) for two superconductors;
NbSe, [5] and YNi,B,C [6] by performing scanning tun-
neling spectroscopy (STS) at low temperatures. We inte-
grate the measured local DOS (LDOS) over a certain area
around a vortex core. The former material is known to
posses an anisotropic gap without node while the latter is
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speculated to be a pointlike nodal gap. Thus these materials
provide an excellent testing ground to check the theoretical
prediction. Indeed both give rise to a V-shape DOS in
common. This study may be useful in understanding vor-
tices recently produced in ultracold Fermionic superfluids
in °Li atomic gases [7].

Theory.—The quasiclassical theory is valid in the case of
kr€& > 1, which is satisfied in almost all type II super-
conductors. kf is the Fermi wave number and £ is the BCS
coherence length which is the length scale of our unit. We
introduce the pair potential A(r), the vector potential A(r),
and the quasiclassical Green’s functions g(iw,,T, ﬁ),
fliw,,r, k), and filiw,r, k), where r is the center-of-
mass coordinate of the Cooper pair and the direction of the
momentum k = k/|k|. The Eilenberger equation is given
by

{wn 4 évF . G + %A(r))}f — AlrK)g, .
fon = 5w (T 27 aw)lrt = 2t e

where g =[1 — fTf]/2, Reg >0, vp = vyk is Fermi
velocity, and ¢ is a flux quantum [8,9]. The applied field
H is along the z direction. With the symmetric gauge, the
vector potential is written as A(r) = %H X r + a(r), and
an internal field h(r) is given by h(r) = V X a(r). By the
numerical calculation Eq. (1) is self-consistently solved
with the assumption V,(k, k') = Vyo(K)p(k') and
A(r, k) = A(r)¢(k), considering the self-consistent con-
ditions for A(r) and a(r);

A®) = N2aT S Vlo®)fliw,r. R (2)
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where j(r) = V X V X a(r), N, is density of states at the
Fermi level in the normal state. (- - -); means the average
over the direction of k. The cutoff energy is set as w, =
20T.. Ay is uniform gap at T = 0. We use the high « for the
Ginzburg-Landau parameter. The angle dependence of the
pair potential o(k) specifies various gap structures with
isotropic, line-node, or point-node gaps.

The LDOS at an energy E is given by

N(E, r) = No(Reg(iw, — E + in,r,K));, (4

where g is calculated by Eq. (1) with iw, — E + in. We
set 7 = 0.01A,. The total DOS N(E) is the spatial average
of the LDOS, i.e., N(E) = (N(E, r)),. The self-consistent
calculation is performed within the vortex-lattice unit cell,
which is divided into 81 X 81 mesh points. We assume that
vortices form a triangular lattice. The cylindrical Fermi
surface is chosen for the s-wave and the line-node case.

And we use the spherical Fermi surface for the point-node
case.

We display the DOS N(E) for the s-wave case with the
isotropic gap in Fig. 1(a). It is seen from this that the DOS
has a V-shape form with a singularity at £ = 0, namely,

N(E) = Ny(H) + alAﬂ + O(E?), 3)

0

where Ny(H) is the energy independent term, correspond-
ing to the zero-energy DOS which is only a function of the
field H. This yields the Sommerfeld 7-linear coefficient
vo(H) in the specific heat as yy(H) = lim;_oC(T)/T =
(272 /3)Ny(H). We confirm that the sharp V-shape DOS is
easily smeared by the thermal broadening effect.
Impurities also affect smearing of the sharp edge of the
V-shape DOS which becomes round by finite mean free
path effect due to impurities. The linear slope «(H) in
N(E) is field dependent, For the s wave in Fig. 1(a),
a(H) is small at lower fields. As H increases a(H) takes
a maximum around H/H_, ~ 0.3 and then becomes
smaller again towards H_,, continuing to a flat DOS in
the normal state. This nonmonotonic behavior of the slope
is the same also for the point-node case, but is contrasted
with that in the line-node case; both are discussed below.

In Fig. 1(b) we exhibit the results for the line-node case
described by the pair function ¢(6, ¢) = +/2cos26. At
H =0, N(E) = a|E|/A, without a constant term in the
low energy range as expected. In the vortex state this
expression is valid except that we must add a field depen-
dent E = 0 value, that is, N(E) = Ny(H) + a|E|/A,. At
first sight this result seems ‘““‘apparent’ because the original
zero field DOS has a V shape and it is simply shifted
upwards. However, this is not the case because the
V-shape DOS is obtained even when the original gap
structure is not a V shape as already shown in the s-wave
case. The field dependence of a(H) in the line-node case is

20 1.0 0 1.0 2.0
E

(a) isotropic gap
HIH, = 0, 0.26, 0.35,
0.44,0.53, 1
(b) line-node gap
H/Hz =0,0.17, 0.25,
0.33,0.42, 1
(c) point-node gap
H/H =0, 0.017, 0.043,
0.086, 0.17, 1
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20 10 0
E

FIG. 1 (color online). Averaged density of states N(E) of
(a) the isotropic gap, (b) the line-node gap, and (c) the point-
node gap. H increases from bottom to top at E = 0.
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seen to be a monotonic decreasing function with H where
the maximum slope occurs at H = 0. In Fig. 1(c) we show
the V-shape DOS for the point-node case at H > 0. It is
seen that at low fields the linear portion of |E| is limited to
low energies around E = (. But as H increases a V-shape
DOS feature manifests itself for wider energy ranges, so
that the form in Eq. (5) is evident.

This ubiquitous V-shape DOS can be understood in
terms of the LDOS. We show the so-called spectral evolu-
tion for the s-wave case in Fig. 2(a) where the spectral
weight N(E, r) in Eq. (4) is displayed in a plane of the
distance r from the vortex core and the energy E/A,. The
zero-energy peak at the core site is split into two peaks as
moving away from the core, that is, the two “‘trajectories’
are given by r = B|E|. This spectral evolution agrees with
the STS observation on NbSe, shown in Fig. 2(b). The total
DOS is obtained by integrating this spectral weight spa-
tially for each energy, namely,

N(E) = N, + f°° drré(r — BIEl) = Ny + B2El. (6)
0

The first term comes from the zero-energy peak at r = 0.
This argument is applicable for the d-wave case where
instead of the circular symmetry for the s-wave case the
fourfold symmetry must be taken into account, which
amounts to modifying the coefficient 3%, but the |E| de-
pendence remains unchanged. Thus it is understood that
the V-shape DOS is universal, independent of the under-
lying original gap structure.

Experiment. —NbSe, is a typical anisotropic s-wave
superconductor with a gap ranging from 0.7 to 1.3 meV,
T.=72K, and H,(T =0)=3.2T, whose layered
structure and van der Waals surfaces are ideal for STM-
STS experiments [5]. When an external field is applied to
the c¢ axis, the vortices form a triangular lattice. A series of
differential conductance spectra o(r, V) are taken along a
line that extends radially through a vortex. Such an ex-
ample taken at 50 mK and 0.025 T is shown in Fig. 2(b).
The overall features and numerous details of the LDOS
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FIG. 2 (color online). (a) Theoretical calculation of LDOS
N(E, r), showing very similar subgap peak structures to (b).
(b) The spectral evolution N(E, r) in NbSe, at 0.025 T along
109 nm length that intersects a vortex as measured by STM-STS.

agree very well with the theoretical calculations shown in
Fig. 2(a) (also see Ref. [10]).

In order to deduce the spatially averaged DOS over a
unit cell, the data are collected along the line paths that
extend out in three different directions from a vortex as
shown in Fig. 3. The normalized DOS are inferred by the
ratio of conductance, o(r, V)/o(r,V =5 meV), and are
shown as a color scale image. These data are weighted by
radius and summed to emulate an integration over the unit
cell. This is essentially a polar coordinate integration:
N(E) = [N(E,r, 0)rdrdf. The resulting averaged DOS
are displayed in Fig. 4(a) for two fields H = 0.1 and
0.4 T along with the DOS at a zero field showing the
s-wave gap function. A definite V shape in the DOS at
finite fields is evident between —0.6 and 0.6 meV, and
confirmed by the better fit attained by o(V)= oy +
a|V| + BV? (solid line) over that of a simpler parabolic
form o(V) = o, + BV? (dashed line) as shown in
Fig. 4(b). Furthermore, we note that the zero bias offset
o /oy (oy is the normal state conductance) corresponding
to the Sommerfeld coefficient y(H)/yy at low T nicely
matches the specific heat experiments [11] to within 5%.

Similar analyses have been performed on YNi,B,C
whose gap structure is speculated to be pointlike nodes
and o (r, V) has been measured at 460 mK [6]. The samples
have T, = 15.6 K and H.,(T = 0) = 8 T. When the ex-
ternal field is applied to the ¢ axis of this tetragonal system,
a square vortex lattice is formed. At 7 = 450 mK, STS
data are collected for various spatial points and bias volt-
ages to yield the average DOS N(E). The results are shown
in Figs. 4(c) and 4(d) for H =0, 0.07, and 0.3 T. The
conductance data sets for finite fields are seen to posses a
V-shape dependence. Although it is difficult from these
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FIG. 3 (color online). Spectral evolution along 3 paths (black
solid lines) for NbSe, with respect to the vortex lattice for H =
0.1 and 0.4 T. The LDOS data between the 2 horizontal white
lines are used in the integration.
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(a) Spatially averaged DOS N(E) over a unit cell at H = 0, 0.1, and 0.4 T for NbSe,. (b) Same data but over =0.6 mV range

inside the gap. The solid lines with a + b|V| + c|V|? are seen better fitting curves than the dashed line with a quadratic form a +
c'|VI2. (c) DOS N(E) averaged over a unit cell at H = 0, 0.07, and 0.3 T for YNi,B,C. (d) DOS N(E) averaged over circular area with

diameter 10 nm around a core in YNi,B,C.

data to determine the precise functional form o (V) =
oy + a|V|7, it contains a linear term 5 = 1.

As is clear from the above argument leading to Eq. (6),
we could see a V-shape tunneling conductance if we
restrict our integration region to a narrower region around
a core. This procedure emphasizes the contribution from
the vortex core which ultimately yields a V-shape DOS. In
fact as shown in Fig. 4(d) which is obtained by integrating
over a circular area with diameter 10 nm centered at a core,
one can see a clear V-shape conductance curve for both
fields.

The ubiquitous V-shape DOS has important consequen-
ces on identifying the pairing symmetry, in particular, its
gap structure through the 7 dependences of various ther-
modynamic quantities as mentioned before. At low tem-
peratures the T dependence is governed by the functional
form of DOS. Using the V-shape DOS in Figs. 1 and 4, the
simple power law counting tells us the following: specific
heat C(T)/T = vyo(H) + o'T, nuclear relaxation time
T\(T)"' « T + ¢'T?, and thermal conductivity «(7)
T + ¢"T?. Therefore, in the experiment under magnetic
field, we cannot simply assign the origin of the power law
behavior as a line node, since the origin may be the
V-shape DOS due to the vortex states, not due to the
line-node gap structure. The T, behavior T,(T)" ! o T3
under magnetic fields is a result of the spatial average. If
we observe T outside of the vortex core by site selective
NMR technique [12], we can unambiguously identify the
signal due to the line node.

Simon and Lee [13], and Won and Maki [14] derive a
scaling law to describe T and H dependences of various
thermodynamic quantities for the line-node d-wave sys-
tems. In particular, the latter authors explicitly find a scal-
ing function based on the averaged DOS obtained from the
Doppler shift idea [15] whose functional form differs from
ours. The Simon-Lee and Won-Maki scaling, which is
quite successful for wide range of line-node superconduc-
tors (see, for example, Ref. [16]), can be improved and
applied to other superconductors with different gap struc-
tures by using the obtained V-shape DOS.

In summary, by the self-consistent quasiclassical calcu-
lation evaluating the vortex contribution exactly, we have

demonstrated the averaged density of states in the mixed
state is a V shape, described by N(E) = N(E = 0)+
ag|E|/Ay + O(E?). This formula is valid for any under-
lying gap structures; isotropic, point-node, or line-node
gaps. However the ap is small for the isotropic and
point-node gap case in a low field. Two STM experiments
on NbSe, and YNi,B,C unambiguously exhibit this be-
havior in their tunneling conductance. The vortex-lattice
geometry does not affect the V shape and just slightly
changes ay. We have discussed several important conse-
quences. In particular, when one identifies the gap symme-
try by measuring thermodynamic quantities, careful
consideration is needed in the mixed state.
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