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Because of the chiral nature of electrons in a monolayer of graphite (graphene) one can expect weak
antilocalization and a positive weak-field magnetoresistance in it. However, trigonal warping (which
breaks p! �p symmetry of the Fermi line in each valley) suppresses antilocalization, while intervalley
scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire
tends to restore conventional negative magnetoresistance. We show this by evaluating the dependence of
the magnetoresistance of graphene on relaxation rates associated with various possible ways of breaking a
‘‘hidden’’ valley symmetry of the system.
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The chiral nature [1– 4] of quasiparticles in graphene
(monolayer of graphite), which originates from its honey-
comb lattice structure and is revealed in quantum Hall
effect measurements [5,6], is attracting a lot of interest.
In recently developed graphene-based transistors [5,6] the
electronic Fermi line consists of two tiny circles [7] sur-
rounding corners K� of the hexagonal Brillouin zone [8],
and quasiparticles are described by 4-component Bloch
functions � � ��K�;A; �K�;B; �K�;B; �K�;A�, which char-
acterize electronic amplitudes on two crystalline sublatti-
ces (A and B), and the Hamiltonian

 Ĥ � v�z � �p����x�p2
x � p

2
y	 � 2�ypxpy�: (1)

Here, we use direct products of Pauli matrices �x;y;z; �0 


1̂ acting in the sublattice space (A, B) and �x;y;z;�0 
 1̂

acting in the valley space (K�) to highlight the form of Ĥ
in the nonequivalent valleys [8]. Near the center of each
valley electron dispersion is determined by the Dirac-type
part v�p of Ĥ. It is isotropic and linear. For the valley K�
the electronic excitations with momentum p have energy
vp and are chiral with �p=p � 1, while for holes the
energy is �vp and �p=p � �1. In the valley K�, the
chirality is inverted: it is �p=p � �1 for electrons and
�p=p � 1 for holes. The quadratic term in Eq. (1) violates
the isotropy of the Dirac spectrum and causes a weak
trigonal warping.

Because of the chirality of electrons in a graphene-based
transistor, charges trapped in the substrate or on its surface
cannot scatter carriers in exactly the backwards direction
[2,7], provided that they are remote from the graphene
sheet by more than the lattice constant. In the theory of
quantum transport [9], the suppression of backscattering is
associated with weak antilocalization (WAL) [10]. For
purely potential scattering, possible WAL in graphene
has recently been related to the Berry phase � specific to
the Dirac fermions, though it has also been noticed that

conventional weak localization (WL) may be restored by
intervalley scattering [11,12].

In this Letter we show that the WL magnetoresistance
(MR) in graphene directly reflects the degree of valley
symmetry breaking by the warping term in the free-
electron Hamiltonian (1) and by atomically sharp disorder.
To describe the valley symmetry, we introduce two sets of

4� 4 Hermitian matrices: ‘‘isospin’’ ~� � ��x;�y;�z	

and ‘‘pseudospin’’ ~� � ��x;�y;�z	. These are defined as

 �x��z��x; �y��z��y; �z��0��z; (2)

 �x��x��z; �y��y��z; �z��z��0; (3)

and form two mutually independent algebras, � ~�; ~�� � 0,

 ��s1
;�s2
� � 2i"s1s2s�s; ��l1 ;�l2� � 2i"l1l2l�l;

which determine two commuting subgroups of the group
U4 of unitary transformations [13] of a 4-component �: an

isospin (sublattice) group SU�
2 
 fe

ia ~n ~�g and a pseudospin

(valley) group SU�
2 
 fe

ib ~n� ~�g.

The operators ~� and ~� help us to represent the electron
Hamiltonian in weakly disordered graphene as
 

Ĥ � v ~�p� ĥw � Îu�r	 �
X

s;l�x;y;z

�s�lus;l�r	;

where ĥw � ���x�
~�p	�z�x�

~�p	�x: (4)

The Dirac part of Ĥ in Eq. (4), v ~�p, and potential disorder
Îu�r	 [Î is a 4� 4 unit matrix and hu�r	u�r0	i � u2��r�
r0	] do not contain pseudospin operators �l; i.e., they
remain invariant under the group SU�

2 transformations.

Since ~� and ~� change sign under the time inversion
[14], the products �s�l are t! �t invariant and, together
with Î, can be used as a basis to represent nonmagnetic
static disorder. Below, we assume that remote charges
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dominate the elastic scattering rate, ��1 
 ��1
0 


��u2=@, where � � pF=�2�@
2v	 is the density of states

of quasiparticles per spin in one valley. All other types of
disorder which originate from atomically sharp defects
[15] and break the SU�

2 pseudospin symmetry are included
in a time-inversion-symmetric [14] random matrix
�s�lus;l�r	. Here, uz;z�r	 describes different on-site ener-
gies on the A and B sublattices. Terms with ux;z�r	 and
uy;z�r	 take into account fluctuations of A! B hopping,
whereas us;x�r	 and us;y�r	 generate intervalley scattering.
In addition, warping term ĥw not only breaks p! �p
symmetry of the Fermi lines within each valley but also
partially lifts SU�

2 symmetry.
Hidden SU�

2 symmetry of the dominant part of Ĥ in
Eq. (4) enables us to classify the two-particle correlation
functions, ‘‘Cooperons’’ which determine the interference
correction to the conductivity, �g by pseudospin. Below,
we show that �g is determined by the interplay of one
pseudospin singlet (C0) and three triplet (Cx;y;z)
Cooperons, �g/�C0�Cz�Cx�Cy, some of which are
suppressed due to a lower symmetry of the Hamiltonian in
real graphene structures. That is, the ‘‘warping’’ term ĥw
and the disorder �s�zus;z suppress intravalley Cooperons
Cx;y and wash out the Berry phase effect and WAL,
whereas intervalley disorder �s�x�y	us;x�y	�r	 suppresses
Cz and restores weak localization [9] of electrons, provided
that their phase coherence is long. This results in a WL-
type negative weak-field magnetoresistance in graphene,
which is absent when the intervalley scattering time is
long, as we discuss at the end of this Letter.

To describe quantum transport of 2D electrons in gra-
phene we (a) evaluate the disorder-averaged one-particle
Green functions, vertex corrections, Drude conductivity,
and transport time; (b) classify Cooperon modes and derive
equations for those which are gapless in the limit of purely
potential disorder; (c) analyze ‘‘Hikami boxes’’ [9,10] for
the weak localization diagrams paying attention to a pecu-
liar form of the current operator for Dirac electrons and
evaluate the interference correction to conductivity leading
to the WL magnetoresistance. In these calculations, we
treat trigonal warping ĥw in the free-electron Hamiltonian
Eqs. (1) and (4) perturbatively, assume that potential dis-
order Îu�r	 dominates in the elastic scattering rate, ��1 

��1

0 � ��u2=@, and take into account all other types of
disorder when we determine the relaxation spectra of low-
gap Cooperons.

(a) Standard methods of the diagrammatic technique for
disordered systems [9,10] at pFv�� @ yield the disorder-
averaged single particle Green’s function,

 Ĝ R=A�p; �	 �
�R=A � v ~�p
�2
R=A � v

2p2 ; �R=A � ��
1

2
i@��1

0 :

The current operator, v̂ � v ~�, for the Dirac-type parti-
cles described in Eq. (1) is momentum independent. As a
result, the current vertex ~vj (j � x, y), which enters the

Drude conductivity, Fig. 1(a),
 

gjj �
e2

�@

Z d2p

�2�	2
Tr f~vjĜ

R�p; �	v̂jĜ
A�p; �	g;

� 4e2�D; with D � v2�0 

1

2
v2�tr; (5)

is renormalized by vertex corrections in Fig. 1(b): ~v �
2v̂ � 2v ~�. Here, Tr stands for the trace over the AB and
valley indices. The transport time in graphene is twice the
scattering time, �tr � 2�0, due to the scattering anisotropy
(lack of backskattering off a potential scatterer). This
follows from the Einstein relation Eq. (5) (where spin
degeneracy has been taken into account).

(b) The WL correction to the conductivity is associated
with the disorder-averaged two-particle correlation func-
tion C	�;	

0�0


�;
0�0 known as the Cooperon. It obeys the Bethe-
Salpeter equation represented diagrammatically in
Fig. 1(c). The shaded blocks in Fig. 1(c) are infinite series
of ladder diagrams, while the dashed lines represent the
correlator of the disorder in Eq. (4). Here, the valley indices
(K�) of the Dirac-type electron are included as super-
scripts with incoming 	� and outgoing 	0�0, and the
sublattice (AB) indices as subscripts 
� and 
0�0.

It is convenient to classify Cooperons in graphene as iso-
and pseudospin singlets and triplets,
 

Cl1l2s1s2
� 1

4

X

;�;
0;�0;

X
	;�;	0;�0;

��y�s1
�y�l1	

	�

�

� C	�;	
0�0


�;
0�0 ��s2
�y�l2 �y	

�0	0

�0
0 : (6)

Such a classification of modes is permitted by the commu-
tation of the iso- and pseudospin operators ~� and ~� in

FIG. 1. (a) Diagram for the Drude conductivity with (b) the
vertex correction. (c) Bethe-Salpeter equation for the Cooperon
propagator with valley indices 	�	0�0 and AB lattice indices

�
0�0. (d) Bare ‘‘Hikami box’’ relating the conductivity
correction to the Cooperon propagator with (e) and (f) dressed
‘‘Hikami boxes.’’ Solid lines represent disorder averaged GR=A;
dashed lines represent disorder.

PRL 97, 146805 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
6 OCTOBER 2006

146805-2



Eqs. (2), (3), and (6), ��s;�l� � 0. To select the isospin-
singlet (s � 0) and triplet (s � x, y, z) Cooperon compo-
nents (scalar and vector representation of the group SU�

2 


feia ~n�
~�g), we project the incoming and outgoing Cooperon

indices onto matrices �y�s1
and �s2

�y, respectively. The

pseudospin-singlet (l � 0) and triplet (l � x, y, z)
Cooperons (scalar and vector representation of the ‘‘val-
ley’’ group SU�

2 
 fe
ib ~n� ~�g) are determined by the projec-

tion of C	�;	
0�0


�;
0�0 onto matrices �y�l1 (�l2 �y) and are
accounted for by superscript indices in Cl1l2s1s2

.
For disorder Îu�r	, the equation in Fig. 1(c) is

 Cl1l2s1s2
�q	 � �0�l1l2�s1s2

�
1

4���0@

X
s;l

Cll2ss2
�q	

Z d2p

�2�	2
Tr f�s�y�l�y�Ĝ

R
p;@!���

t�y�l1 �y�s1
ĜA

@q�p;�g:

It leads to a series of coupled equations for the Cooperon
matrix Cl with components Cllss0 . It turns out that for
potential disorder Îu�r	 isospin-singlet modes Cll00 are gap-
less in all (singlet and triplet) pseudospin channels,
whereas triplet modes Cllxx and Cllyy have relaxation gaps
�lx � �ly �

1
2 �
�1
0 and Cllzz have gaps �lz � ��1

0 . When ob-
taining the diffusion equations for the Cooperons using the
gradient expansion of the Bethe-Salpeter equation, we take
into account its matrix structure. The matrix equation for
each Cooperon matrix Cl, where l � 0; x; y; z, has the form

 

1
2v

2�0q2 � �l0 � i!
�i
2 vqx

�i
2 vqy 0

�i
2 vqx

1
2 �
�1
0 0 0

�i
2 vqy 0 1

2 �
�1
0 0

0 0 0 ��1
0

0
BBB@

1
CCCACl � 1̂:

After the isospin-triplet modes were eliminated, the diffu-
sion operator for each of the four gapless or low-gap modes
Cl0 � Cll00 becomes Dq2 � i!� �l0, where D � 1

2v
2�tr �

v2�0.
Symmetry-breaking perturbations lead to relaxation

gaps �l0 in the otherwise gapless pseudospin-triplet com-
ponents, Cx0, Cy0, Cz0 of the isospin-singlet Cooperon,
though they do not generate a relaxation of the
pseudospin-singlet C0

0 protected by the time-reversal sym-
metry of the Hamiltonian (4). We include all scattering
mechanisms described in Eq. (4) in the corresponding
disorder correlator (dashed line) on the right-hand side of
the Bethe-Salpeter equation and in the scattering rate in the
disorder-averaged GR=A, as ��1

0 ! ��1 � ��1
0 �

P
sl�
�1
sl .

For simplicity, we assume that different types of disorder
are uncorrelated, hus;l�r	us0;l0 �r0	i � u2

sl�ss0�ll0��r� r0	
and, on average, isotropic in the x-y plane: u2

xl � u2
yl 


u2
?l, u

2
sx � u2

sy 
 u2
s?. We parametrize them by scattering

rates ��1
sl � ��u2

sl=@, where ��1
sx � ��1

sy 
 ��1
s? and ��1

xl �

��1
yl 
 ��1

?l due to the x-y plane isotropy of disorder, which
are combined into the intervalley scattering rate ��1

i and
the intravalley rate ��1

z , as

 ��1
i � 4��1

?? � 2��1
z? ; ��1

z � 4��1
?z � 2��1

zz : (7)

The trigonal warping term, ĥw in the Hamiltonian (1)
plays a crucial role for the interference effects since it
breaks the p! �p symmetry of the Fermi lines within
each valley: ��K�;�p	 � ��K�;p	, while ��K�;�p	 �
��K�;p	 [8]. It has been noticed [16] that such a deforma-
tion of a Fermi line of 2D electrons suppresses Cooperons.

As ĥw has a similar effect, it suppresses the pseudospin-
triplet intravalley components Cx0 and Cy0, at the rate

 ��1
w � 2�0��

2�=@v2	2: (8)

However, since warping has an opposite effect on valleys
K� and K�, it does not cause gaps in the intervalley
Cooperons C0

0 (the only true gapless Cooperon mode)
and Cz0.

Altogether, the relaxation of modes Cl0 can be described
by the following combinations of rates:

 �0
0 � 0; �z0 � 2��1

i ;

�x0 � �y0 � ��1
w � �

�1
z � �

�1
i 
 ��1

� :

In the presence of an external magnetic field, B � rotA,
and inelastic decoherence, ��1

’ , equations for Cl0 � Cll00

read

 �D�ir�
2e
c@

A	2 � �l0 � �
�1
’ � i!�Cl0�r; r

0	 � ��r� r0	:

(c) Because of the momentum-independent form of the
current operator ~v � 2v ~�, the WL correction to conduc-
tivity �g includes two additional diagrams, Fig. 1(e) and
1(f) besides the standard diagram shown in Fig. 1(d). Each
of the diagrams in Fig. 1(e) and 1(f) (not included in the
analysis in Ref. [11] ) produces a contribution equal to
(�1

4 ) of that in Fig. 1(d). This partial cancellation, together
with a factor of 4 from the vertex corrections and a factor of
2 from spin degeneracy, leads to

 �g �
2e2D
�@

Z d2q

�2�	2
�Cx0 � C

y
0 � C

z
0 � C

0
0	: (9)

Using Eq. (9), we find the B � 0 temperature dependent
correction, ��, to the graphene sheet resistance,

 

���0	

�2
���g�

e2

�h

�
ln
�
1�2

�’
�i

�
�2ln

�’=�tr

1�
�’
��

�
; (10)

and evaluate magnetoresistance, ��B	 � ��0	 
 ���B	,
 

���B	��
e2�2

�h

�
F
�
B
B’

�
�F

�
B

B’�2Bi

�
�2F

�
B

B’�B�

��
;

F�z	� lnz� 
�
1

2
�

1

z

�
; B’;i;��

@c
4De

��1
’;i;�: (11)

Here,  is the digamma function, and the decoherence
��1
’ �T	 determines the curvature of ���B	 at B & B’.
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Equations (10) and (11) represent the main result of this
Letter. They show that in graphene samples with the inter-
valley time shorter than the decoherence time, �’ > �i, the
quantum correction to the conductivity has the WL sign.
Such behavior is expected in graphene tightly coupled to
the substrate (which generates atomically sharp scatterers).
Figure 2 illustrates the corresponding MR in two regimes:
B� � Bi (�z, �w � �i) and B� � Bi (�� � �i). In both
cases, the low-field MR at B< Bi is negative (for B� � Bi,
the MR changes sign at B� Bi). A dashed line shows what
one would get upon neglecting the effect of warping; the
solid curve shows the MR behavior in graphene with a high
carrier density, where the effect of warping is strong and
leads to a fast relaxation of intravalley Cooperons, at the
rate described in Eq. (10). Then, in Eqs. (10) and (11) �� 

�w � �i < �’ and B� � Bi, which determines MR of a
distinctly WL type. Note that in the latter case, MR is
saturated at B� Bi, in contrast to the WL MR in conven-
tional electron systems, where the logarithmic field depen-
dence extends into the field range of @c=4De�tr. In a sheet
loosely attached to a substrate (or suspended), the inter-
valley scattering time may be longer than the decoherence
time, �i > �’ > �w (Bi < B’ < B�). In this case, Cz0 in
Eq. (11) is effectively gapless and cancels C0

0, whereas
trigonal warping suppresses the modes Cx0 and Cy0, so that
�g � 0 and MR displays neither WL nor WAL behavior:
���B	 � 0.

Equation (11) explains why in the recent experiments on
quantum transport in graphene [17] the observed low-field
MR displayed a suppressed WL behavior rather than WAL.
For all electron densities in the samples studied in [17] the
estimated warping-induced relaxation time is rather short,
�w=�tr � 5–30, �w < �’, which excluded any WAL.
Moreover, the observation [17] of a suppressed WL MR
in devices with a tighter coupling to the substrate agrees
with the behavior expected in the case of sufficient inter-
valley scattering, �i < �’, whereas the absence of any WL
MR, ���B	 � 0, for a loosely coupled graphene sheet is
what we predict for samples with a long intervalley scat-
tering time, �i > �’.

In a narrow wire with the transverse diffusion time
L2
?=D� �i, ��, �’ edges scatter between valleys [18].

Thus, we estimate �l0 � �
2D=L2

? for the pseudospin triplet

in a wire, whereas the singlet C0
0 remains gapless. This

yields negative MR for B & 2�B?, B? 
 @c=eL2
?:

 

��wire�B	

�2
�

2e2L’
h

�
1���������������������������������

1� 1
3B

2=B’B?
q � 1

�
: (12)

Equations (10)–(12) completely describe the WL effect
in graphene and explain how the WL magnetoresistance
reflects the degree of valley symmetry breaking. They
show that, despite the chiral nature of electrons in graphene
suggestive of antilocalization, their long-range propagation
in a real disordered material or a narrow wire does not
manifest the chirality.
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FIG. 2. MR expected in a phase-coherent graphene �’ � �i:
with �z, �w � �i (dashed line) and �� � �i (solid line). In the
case of �’ < �i, �� � 0, so that ���B	 � 0.
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