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The microscopic mechanism of thermal dissipation in quantum turbulence is numerically studied by
solving the coupled system involving the Gross-Pitaevskii equation and the Bogoliubov—de Gennes
equation. At low temperatures, the obtained dissipation does not work at scales greater than the vortex
core size. However, as the temperature increases, dissipation works at large scales and it affects the vortex
dynamics. We successfully obtain the mutual friction coefficients of the vortex in dilute Bose-Einstein

condensates dynamics as functions of temperature.

DOI: 10.1103/PhysRevLett.97.145301

The physics of quantum turbulence (QT), comprising
tangled quantized vortices, is one of the most important
research topics in low-temperature physics [1]. Stimulated
by recent experiments on both superfluid “He and super-
fluid *He where a few similarities were observed between
quantum and classical turbulences [2—4], studies on QT
have entered a new stage where one of the main motiva-
tions is to investigate the relationship between quantum
and classical turbulences.

With this motivation, we theoretically investigated QT in
our previous studies by numerically solving the Gross-
Pitaevskii (GP) equation [5,6]. Since the GP equation is
applicable to compressible quantum fluids, compressible
excitations of wavelengths smaller than the vortex core
size, which affect the vortex dynamics in QT, are emitted
during vortex reconnections, the disappearance of small
vortices, or by high frequency Kelvin waves. As a result,
the intrinsic behavior of quantized vortices in QT, such as
the Richardson cascade, is hindered by the compressible
short-wavelength excitations. To eliminate these excita-
tions, we introduced a phenomenological dissipation term
that works only at scales smaller than the vortex core size
and successfully obtained the Kolmogorov law in QT,
which is one of the most important statistical laws in
classical turbulence [7]. However, the microscopic origin
of dissipation and the realistic nature of the introduced
dissipation term in quantum fluids were still unknown.

In the research field of superfluid “He, the dissipation
mechanism in quantized vortices has been studied for
approximately 50 years with the consequent development
of the concept of mutual friction. The hydrodynamics of
superfluid “He is usually described using the two-fluid
model; in this model, the system consists of an inviscid
superfluid and viscous normal fluid, and dissipation in
quantized vortices is caused by the mutual friction between
the vortices and normal fluid [8]. Although mutual friction
is very important in QT [9-13], no microscopic theory
exists that can reproduce the mutual friction coefficients as
functions of temperature. This is because the superfluid
“He system is strongly correlated and extremely difficult to
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study microscopically by using, for example, the quantum
field theory.

Quantized vortices were also discovered in systems of
atomic Bose-Einstein condensates (BECs) [14,15]. Since
the systems are different from superfluid “He, they can be
easily studied by using the GP equation for the condensate
and the Bogoliubov—de Gennes (BdG) equation for the
excitations from the condensate; these equations should
also prove useful in revealing the microscopic dissipation
mechanism in quantized vortices. However, in the research
field of atomic BECs, no concept exists that explains
dissipation or mutual friction of quantized vortices. Some
groups [16-18] have discussed dissipation in atomic
BECs; however, they have not directly considered the
dissipation mechanism in quantized vortices. In this
work, we are the first to study the dissipation mechanism
in quantized vortices in dilute BECs. With this study, we
cannot only justify the phenomenological dissipation term
introduced in our previous work but also define the mutual
friction in a dilute BEC by considering its relationship with
the mutual friction in superfluid “He.

It would be fairly reasonable to assume that dissipation
in quantum fluids, including the quantized vortices, is
caused by the interaction between the condensate and its
excitations. The dynamics of the excitations can be de-
scribed by the BAdG equation; therefore, we numerically
solve the time development of the coupled system involv-
ing the GP and BdG equations for a quantum fluid with
some quantized vortices. Our results reveal that dissipation
obtained by the coupled equations can work only at small
scales and reproduces the phenomenological dissipation
term introduced at very low temperatures, as mentioned
in our previous studies. As the temperature increases,
however, dissipation works at larger scales and it affects
the vortex dynamics; this is qualitatively similar to the
mutual friction of quantized vortices in superfluid “He.
Moreover, our model is limited to a dilute Bose gas.
Thus, we further investigate dissipation as a model for
mutual friction in dilute BECs by calculating the dynamics
of one straight vortex, and we successfully obtain the
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friction coefficients as functions of temperature. It is im-
possible to directly compare the obtained friction coeffi-
cients with those of superfluid “He because both the GP
and BdG equations are applicable only to dilute BECs.
However, this study can be regarded as the first study
elucidating the mutual friction of quantized vortices in
dilute BECs.

To consider a quantum fluid as a Bose-Einstein con-
densed system, we start with the many-body Hamiltonian,

A= fdx\iﬁ[—vz —u+ %l\iflﬂ\if. (1)
Its dynamics can be described by

oW e
il A gV, )
Here, W(x, 1) is the boson field operator, x the chemical
potential, and g the coupling constant. In the Bose-Einstein
condensed system, the field operator W(x, ¢) can be repre-
sented in terms of the mean-field ansatz [19,20],

V=d+3+¢ 3)
which conserves the particle number. Here, we define the
terms appearing in Eq. (3): the macroscopic wave function
is represented as ®(x, r) = O(/N,/V), the first-ordered
excitations as g(x, f) = O(1/+/V), the higher-ordered ex-
citations as £(x, 1) = O(1/4/N,V), the number of conden-
sate particles as Ny, and the volume of the system as V.
Substituting Eq. (3) into Eq. (2) and neglecting the higher-
ordered excitations f (x, 1), we obtain the GP equation as

0D

i~ ==V =+ (O + 2T RN]D + o) P
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and the BdG equation [21,22] as
9%
i = [V~ 4 2gl0PTE + gt (9)

When the macroscopic wave function is expressed as
®(x, 1) = f(x, )e?™®) f(x,1)* is considered to be the
condensate density, and the superfluid velocity v(x, 1) is
given by v(x, r) = 2V (x, t). The vorticity w(x, 1) = V X
v(x, 1) vanishes everywhere in a single connected region of
the fluid and thus any rotational flow is carried only by
quantized vortices. In the core of each vortex, ®(x, r)
vanishes; therefore, the circulation 95 v -ds around the
core is quantized by 4. The vortex core size is given by
the healing length ¢ = 1/f./g.

The GP equation (4) can be expressed as i0P(x, 1)/t =
Hgp®P(x, ). The Hamiltonian Hgp of the GP equation has
the following imaginary term:

) (I)*
2 q>) } ©)
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This defines the dissipation vy(x, ) of the condensate

caused by the interaction with the noncondensed particles.
We can quantitatively calculate the dissipation y(x, r) from
Eq. (6) by numerically solving the coupled system involv-
ing the GP equation (4) and BdG equation (5).

To solve the BAdG equation (5), we use the Bogoliubov
transformation; therefore,

o1 o
§ = 2lua; + viajl (7)
J

where u;(x, t) and v;(x, 1) are the Bogoliubov coefficients,
and &; and &;-r are the annihilation and creation operators
of a quasiparticle, respectively. We assume that the quasi-
particles are coupled with a heat bath at temperature T’
further, we use the local equilibrium assumption

1
(atay=nN

i~ exp(E;/T) — 1 ®)

with the excitation spectrum E; of quasiparticles. The local
equilibrium assumption (8) yields the energy flow in the
system, as shown in Fig. 1. When excitations such as
vortices or sound waves are formed in the condensate, their
energy is transferred to quasiparticles and finally dissipated
to the heat bath. By using Egs. (7) and (8), we can deduce
the final form of the coupled system involving the GP and
BdG equations:
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i% =[-V? = p + 2g|P*Ju; — gP?v;, = A, (9b)
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FIG. 1. Image of the energy flow in a system of quantum fluid
coupled with a heat bath.
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We numerically solve the coupled equations (9). We use
a pseudospectral method [23] in space with periodic
boundary conditions in a box with a spatial resolution of
323 grid points. With regard to the numerical parameters,
assuming g = 1, we use a spatial resolution of Ax = 0.125
and V = 43, where the length scale is normalized by £. The
numerical time evolution is given by the Runge-Kutta-Gill
method [23] with a temporal resolution of Az = 1 X 107,
We begin with a macroscopic wave function ®(x, t = 0)
that includes several randomly placed vortices, as shown in
Fig. 2(a), and with the uniform excitations g(x, 7 = 0)
given by

1 K+ gl
. =0)=ek¥j, | — L 2 41
ujx,t=0)=e \]2‘/ E, ,
(10)
ey | LK glOP
Uj(x, = 0) = ¢ kijzv oo E] - 1,

where k; = 27/ JV, where j is an integer. Subsequently,
we calculate the dissipation term y(x,r) at = 1.
Figure 2(b) shows the dependence of the Fourier-
transformed dissipation y(k, t) on the wave number k at
several temperatures: T = 0.017,,0.17 ., and 0.57 ., where
T, = 4mw/{Z(3/2)}*/ is the critical temperature for the
Bose condensation of free bosons. At a low temperature
of T = 0.01T,, dissipation works only at wave numbers
greater than 277/ £, which is consistent with the dissipation
term y(k) = yo0(k — 27/ &) with a step function 6 intro-
duced in our previous studies [5,6]. From this result, we
find that only short-wavelength excitations emitted during
the vortex reconnections, the disappearance of small vor-
tices, or by high frequency Kelvin waves get dissipated at
scales smaller than the vortex core size. This phenomenon
has also been confirmed by another simulation that starts
from a state without vortices and obtains smaller and less
k-dependent values of y(k, t). On the other hand, as the
temperature increases, dissipation works at small wave
numbers as well. Since dissipation at small wave numbers
dissipates vortices at scales greater than the vortex core

(a) (b)

FIG. 2. (a) An example of the configurations of quantized
vortices at ¢ = (. (b) Wave number dependence of the Fourier-
transformed dissipation term y(k, = 1), which is obtained by
performing an ensemble average of 25 initial states.

size ¢, the vortex dynamics are directly affected by this
dissipation. Hence, we can expect an effect of y(x, 1)
similar to that of mutual friction in superfluid “He.

Figures 3(a) and 3(b) show the vortex configurations at
t=1 and for T =0.017, and T = 0.17,, respectively,
starting from the vortex configuration shown in Fig. 2(a).
Because dissipation at large scales affects both small vor-
tices and short-wavelength Kelvin waves along the vorti-
ces, the vortex configurations clearly show the difference
in the effects on vortex dynamics at different temperatures.
We can observe fewer vortices and fewer Kelvin waves in
Fig. 3(b) than in Fig. 3(a), which obviously conforms to the
effect of dissipation at large scales. By using the vortex-
filament model, Tsubota ef al. investigated the difference
in the vortex configurations in QT at different temperatures
and observed fewer Kelvin waves at higher temperatures
[24]. Their observation is qualitatively consistent with our
result.

Next, we attempt to calculate the coefficients of mutual
friction as functions of temperature. When one straight
vortex along the z axis is placed under the velocity field
v, = (v,, 0,0), the dynamics of the vortex position s(r) =
(5,(1), s,(),0) can be described by mutual friction as
s(r) = (a'v,, av,,0) [8,11]. Here, « and a' are the coef-
ficients that characterize the amplitude of mutual friction.
The solution becomes

s (1) = (5,(0) + a'v,1,5,(0) + av,t,0). (11)

Starting from the state with one straight quantized vortex,
we numerically solve the coupled equation involving the
GP and BdG equations under the velocity field

)]
iaa—t —[-V2 — 4 g(IDI? + 2n,) + iv, - V]®
+ gm, P, (12a)
ou:
i% =[-V?— pu + 28> + iv, - V]u;
- g(I)zvj, (12b)
v
i% = —[-V2 = u + 2|P|* + iv, - V]y;
+ g®2u,, (12¢)

for the case of v, = 0.1. We can calculate « and ' by

(@ (b)

FIG. 3. Configurations of quantized vortices at t =1 at T =
0.017, (a) and T = 0.17, (b), starting from the configuration
shown in Fig. 2(a).
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FIG. 4. Temperature dependence of the coefficients & and o'
Plots represent the numerical results and lines indicate some
fitting.

comparing the position of the vortex in the numerical
simulation using Eq. (11). Figure 4 shows the temperature
dependence of a and «'. The effect of the dissipation term
v(x, ) on the vortex dynamics at large scales and its
monotonic increase with temperature are evident, which
is qualitatively consistent with mutual friction in superfluid
“He at temperatures much lower than the superfluid critical
temperature. This result develops the first estimation of
mutual friction of quantized vortices in dilute BECs. The
temperature dependence of a and o’ needs to be experi-
mentally observed, and it may become a standard scale for
measuring the temperature in atomic BECs with quantized
vortices.

This work allows quasiparticles to move via Eq. (9), but
we do not discuss the motion here. With regard to turbu-
lence in superfluid “He, Vinen predicted that at finite
temperatures, superfluid and normal fluid are likely to be
coupled together at large scales due to mutual friction and
thus behave similarly to the turbulence in a one-component
fluid [25]. In our simulation, we can also expect a similar
coupled turbulence in which the dynamics of the quasipar-
ticles is strongly coupled with that of the condensate with
both the dynamics becoming comparable at large scales.
This physics will be reported shortly.

In conclusion, we investigated the dissipation mecha-
nism in quantized vortices by numerically solving the
coupled equation involving the GP and BdG equations.
At low temperatures, dissipation works at scales smaller
than the vortex core size, which is consistent with the
phenomenological dissipation term introduced in our pre-
vious studies. As the temperature increases, dissipation can
work at large scales as well, and it directly affects the
vortex dynamics. We successfully related this effect to

the mutual friction in superfluid *He by calculating the
mutual friction coefficients as functions of temperature.
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