PRL 97, 144509 (2006)

PHYSICAL REVIEW LETTERS

week ending
6 OCTOBER 2006

Molecular Dynamics Simulation of Ratchet Motion in an Asymmetric Nanochannel
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The persistence of ratchet effects, i.e., nonzero mass flux under a zero-mean time-dependent drive, when
many-body interactions are present, is studied via molecular dynamics (MD) simulations of a simple lig-
uid flowing in an asymmetric nanopore. The results show that (i) ratchet effects persist under many-body
density correlations induced by the forcing; (ii) two distinct linear responses (flux proportional to the drive
amplitude) appear under strong loads. One regime has the same conductivity of linear response theory up
to a forcing of about 10 kT, while the second displays a smaller conductivity, the difference in responses is
due to geometric effects alone. (iii) Langevin simulations based on a naive mapping of the many-body
equilibrium bulk diffusivity, D, onto the damping rate, y are also found to yield two distinct linear
responses. However, in both regimes, the flux is significantly smaller than the one of MD simulations.
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Recent progresses in the miniaturization of flow devices
place a strategic value on theoretical and simulational
techniques able to promote a deeper insight of the complex
phenomena which control transport at nanoscopic scales.
Nonequilibrium transport is of great relevance also in the
biological context. Migration of water and ions across ion
channels is a well-known example of finely tuned biologi-
cal transport [1], whereas the conversion of chemical into
mechanical energy in molecular pumps is prototypical of
biological machines. In general, there is a great need to
grasp the basic mechanism by which molecules can flow
across nanoconfined geometries, where the large surface-
volume ratios present a steep dissipative barrier to fluid
motion. A fascinating phenomenon in this respect is the so-
called ratchet motion [2], namely, the capability of nano-
fluids to exhibit a net mass transport under a zero-average
dynamic load, or even the possibility to achieve negative
particle mobility (net motion in the direction opposite to
the drive) [3] and to rectify thermal fluctuations [4]. To
date, ratchet phenomena have been studied mostly by
means of one-body Langevin (or Fokker-Planck) descrip-
tions [2,5], in which the many-body features of molecular
motion are conveyed into an effective drag coefficient,
representing the systematic interaction with the surround-
ing fluid, and a noise term, surrogating the collective
motion of the molecules with a source of randomness
[6]. The Langevin approach has been widely applied also
to the study of realistic ion channels [7-9]. Conversely,
previous work has shown the influence of cooperative
motion on ratchet systems, most notably the observation
of current reversal of Brownian hard rods [10], the rectify-
ing capability of conical nanopores [11] and spontaneous
ratchet motion in granular gas [12]. Assessing the robust-
ness of ratchet phenomena towards many-body effects is
thus of great interest, both as a conceptual issue in non-
equilibrium statistical mechanics, as well as to develop
practical investigation tools for applications in nanotech-

0031-9007/06/97(14)/144509(4)

144509-1

PACS numbers: 47.61.—k, 47.11.Mn, 47.56.+r, 66.90.+r

nology and biology. In this work, we take a step along this
direction via nonequilibrium MD simulations of confined
asymmetric nanoflows.

Our target system is a so-called entropic ratchet [13], a
conical nanopore where the longitudinal motion is driven
by an external field, while the transversal motion is domi-
nated by a symmetry breaking in geometrical confine-
ment. At variance with the original model of entropic
trapping, which is known to exhibit negative relative re-
sistance and rectification [13], our model system retains the
essential features of many (biological) nanochannels, most
notably spatial asymmetry [7]. We consider a truncated-
cone channel of height # = 8 A and circular sections of
radii Ry = 7.5 A, R, = 12.5 A ie., a divergent channel
toward the positive orientation of the z axis (see Fig. 1).
The channel is embedded into a triperiodic box of size
L,=L,=55 A and L, =40 A. The MD simulations

refer to liquid Argon atoms, at a density 0.835 amu/A3,
and temperature § = 87.8 K. The atoms interact through a
6—12 Lennard-Jones potential, with the following parame-

FIG. 1. Sketch of xz section of the simulation box at y = 0,
(the origin of axes O is taken in the center of the channel). The
solid line is the wall surface, the dashed one is the isosurface
[V,.(r) = k,6] of argon-wall potential. The effective radii of the
pore (r; and r,) are also indicated.
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ters €/k, = 119.67 K, with k; the Boltzmann constant,
and o = 3.405 A. Moreover, the atoms interact with the
solid wall through a potential of the form V,(r) =
[p, nwf(r —r,Ddr,, where D, is the wall domain and
f(r) is the Lennard-Jones potential between a wall atom at
the position r,, and a liquid particle located at r. In the
above, n,, = 0.033 atoms/A> is the density of the wall
atoms. The Argon-wall potential has the following parame-
ters €, /k, = 87.7 K, o, = 3.45 A. The Lennard-Jones
parameters, used in previous computational studies [14],
correspond to a CH; group in a hydrocarbon chain. In view
of the soft nature of the liquid-wall interaction, the effec-
tive pore seen by the atoms [i.e., the isosurface V, (r) =
k6] lies atradii 7, = 5 A and r, = 10 A at the two channel
mouths (see Fig. 1). The MD equations are advanced using
the velocity Verlet scheme [15], with a time step 0.005 ps,
the potentials are truncated at 7., = 12 A. The simulations
have been performed using software package DLPROTEIN
[16]. Coupling of the system to the heat bath is achieved
via a Berendsen thermostat [17], with a characteristic time
7, = 0.5 ps. The choice for this thermostat, in lieu of other
possible choices (e.g., Nosé-Hoover), was dictated by the
need to minimize possible memory effects under periodic
load. The overdamped Berendsen dynamics offers such
possibility. However, on preliminary studies we have
checked that the Berendsen and Nosé-Hoover dynamics
produced similar responses. Results were found to be
robust against changes in the coupling time 0.05 ps <
T, < 1.5 ps.

The instantaneous particles flux through the channel is
computed by means of the expression

$(1) = %Z'vzi(r), (1)

where v ; is the z component of the velocity of the ith atom
and the prime stands for summation over atoms in the
channel (—h/2 <z; <h/2) at time t. Alternatively, the
flux can be interpreted as the time derivative of the collec-
tive variable (see Zhu et al. [18]) scoring =1 for each atom
crossing the channel from left/right to right/left.

As a preliminary step, we compute the particle flux
under a static external drive. The dynamic behavior under
zero-average periodic forcing will be investigated later on.
After an initial transient, a steady state is observed and an
average mass flux, ®, is computed. Figure 2 illustrates the
flux ® as a function of the forcing amplitude, A, parallel to
z. The results for the truncated-cone geometry are shown,
as well as those for the reference cases of two straight
cylinders with height & and effective radii r; and r,,
respectively. Several remarks are in order.

First, we observe a distinct symmetry breaking between
positive (rightward) versus negative (leftward) forcing.
This lack of symmetry reflects the intuitive notion that
atoms flow more easily along the convergent direction
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FIG. 2. Particle flux (atoms/ps) vs the static forcing amplitude
A,. Black triangles 1 — 1 geometry, squares 2 — 2 geometry,
circles conical pore geometry, dot-dashed line linear response
prediction.

(conventionally denoted as 2 — 1) than along the divergent
one (denoted as 1 — 2). A closer inspection reveals how-
ever a number of subtleties behind this simple and intuitive
picture. To better appreciate this point, it is instructive to
compare the results with those of two straight cylinders,
with effective radii »; (1 — 1 for notational convenience),
and r, (2 — 2), respectively.

The first observation is that at sufficiently large ampli-
tudes, i.e., A, = 0.5 pN, the flux ®_,, virtually coincides
with @,_,,. In other words, the atoms do not “‘see’ the
additional space offered by the expanding cross section
along the flight direction. This can be explained as follows.
Let us define an advective flight time 7, = h/u (i.e., the
time needed by a particle to cross the pore) where u is a
characteristic velocity of a particle in the channel. This
velocity can be estimated as u = ®,_,/p,7ri, p, being
the number of particles per A3. A diffusive time can also be
defined as 7, ~7#/2D, ¥ = (r; + r,)/2 (ie., the time
needed by a particle near the axis to diffuse transversely
in the pore), where D is the bulk diffusion coefficient of
argon. The two time scales match approximately at & =
0.1. For 7, < 7, the particles do not have sufficient time to
explore the full space offered by the truncated-conical
geometry, so that ®,_,, = ®,_,,. Conversely, in the low-
forcing regime, atoms have time to diffuse across the main
flow, and, consequently, they visit all the space offered by
the conical geometry. As a result, no significant difference
is expected between leftward and rightward motion.
Indeed, a close up of Fig. 2 reveals that for A; = 0.5 pN,
D ,_, and ®,_,, lie on the same straight line. The slope of
this line can be predicted as follows. Let us consider an
ensemble of systems at thermodynamic equilibrium at time
t = 0, perturbed by the static external force A at r > 0. At
low forcing, the ensemble average of instantaneous flux
(¢p(1)) is given by linear response theory [19] as

@0 =5 [[(40300)

where the sum runs over all atoms and ()eq indicates aver-
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age at equilibrium. The mean flux in stationary regime @,
as obtained in the limit fr—oo, yields ®/A;=
1.02 (atoms/ps)/pN. This value is in excellent agreement
with the simulation data (see Fig. 2, inset).

The case of right-to-left forcing is quite different. It is
observed that the flux for the straight cylinder ®,_,, is
considerably larger than for the truncated cone, namely,
D, =0.25P,_,,, i.e., molecular motion along the con-
vergent direction experiences a strong penalty due to the
decreasing cross section. For the truncated-cone geometry,
as already pointed out, at low amplitudes, the picture is just
the same as for left-to-right forcing: the value is predicted
by linear response theory. The linear prediction continues
to hold also at very high amplitudes (i.e., A;L, > k,0).
Albeit surprising, this is nonetheless in line with previous
findings from simulations of water in cylindrical pores of
~ 10 A size [18].

The emerging picture of the stationary process is quite
neat. At low forcing, the flow obeys linear response theory
and does not perceive the broken symmetry between the
two directions. The onset of nonlinear effects associates
with the “‘emergence” of the geometrical asymmetry,
marked by the condition that the flight time 7, along the
channel be smaller than the diffusive time 7, across it.
Under such conditions the molecular flow is unable to visit
the annular region offered by the expanding cross section.
As aresult, the net flux is the same as in a straight cylinder
of radius ry. It is remarkable that at high forcing the ®,_,,
response remains quasilinear, although with a slope very
different from the value predicted by linear response the-
ory. The robustness of the quasilinear regime suggests that
the conical pore might serve as nanorectifier, whose re-
sponse can be predicted by simple geometrical consider-
ations for a wide range of external drives. This microscopic
picture is confirmed by Fig. 3, in which the density profiles
for equilibrium and steady-state configurations are shown.
For 2 — 1 forcing, the data exhibit a rather uniform density
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FIG. 3 (color).
equilibrium (a),
A, = 4.15 pN (¢).

Density profiles on a symmetry plane:
static forcing, A; = —4.15pN (b) and

inside the channel and a substantial layering, reminiscent
of the unperturbed one, both inside and outside the pore
region. Conversely, for 1 — 2 forcing, the profile exhibits a
field-induced depletion of the expanding anular region and
the absence of layering inside the pore region.

For the sake of comparison, we have also performed
Langevin simulations with systematic drag, y, and random
forcing, &, tuned on the bulk value of the diffusion coeffi-
cient, D, computed from equilibrium MD simulations, that
is y=kT/mD and (£(t)é(t)) = 2y*DS6(¢ — t). These
results also show a linear dependence of the mass flux on
the forcing amplitude, although with significantly different
slopes as compared to the MD case. More specifically, the
Langevin mass flux is found to be about 5 and 8 times
smaller than the MD one, in the two regimes corresponding
to convergent and divergent directions, respectively. The
discrepancy is likely due to the neglect of many-body
interactions and related memory effects, inherent to the
single-particle Langevin dynamics. An effective way to
include concerted atomic flow within the channel would
be to replace the friction term —7yv with —y(v —u), u
being the macroscopic velocity field. However, the latter
quantity is clearly not available in advance in the Langevin
framework. The observed discrepancy thus provides a clear
indication that the bulk diffusivity alone fails to capture the
full picture behind the mapping of many-body interactions
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FIG. 4. (a) Particle flux @ (atoms/ps) as function of the period
T [Eq. (3)] at different amplitudes A,. Squares A; = 1.66 pN,
triangles A, = 4.15 pN, circles A; = 8.3 pN. The three hori-
zontal lines are the adiabatic plateaux obtained by numerical
integration of (4). (b) ® as a function of the dynamic forcing
amplitude A, for different periods 7. Squares T = 200 ps,
circles T = 50 ps, upper triangles T = 25 ps, lower triangles
T = 12.5 ps. Filled circles: adiabatic values.
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in a confined nanofluid, into an effective single-body
Langevin representation.

Next, we explore the effects of dynamic forcing. In
particular, we focus our attention on genuine ratchet ef-
fects, i.e., the onset of nonzero net particle flux in the face
of zero-average time-dependent forcing, varying in time
according to the following sinusoidal law

F(t) = A, sin(?)i, 3)

Z being the z-axis unit vector. In Fig. 4(a) we show the net
flux @ as a function of the period T for different values of
amplitude A,. It proves expedient to define as the internal
time scale 7 as the time needed by the system, initially at
equilibrium, to reach the stationary regime under the effect
of a static drive. At low forcing, the ensemble average of
¢(¢) is given by linear response theory—Eq. (2)—and 7
can be roughly estimated from the behavior of (¢(¢)). In
our case, 7 = 10 ps. For T =< 7 the flux vanishes; in line
with the basic intuition that at high-frequency forcing there
is no time for the system to absorb systematic momentum.
By increasing the period 7, we observe that the net flux
becomes more and more negative, until, for 7 >> 7, satu-
ration is reached. The negative sign is easily explained as
follows. Since the static dependence ® = ®(A,), has bro-
ken symmetry ®_,(A,) < —P,_,(—A;), A; > 0, the net
flux over a period T is negative because the positive flux
driven in the first (direct) half-cycle is smaller than the
negative flux in the second (reverse) half-cycle. The satu-
ration is explained by noting that, for T > 7, the system
has enough time to adiabatically adjust to the instantaneous
forcing. Thus, the flux can be estimated as

1
Dy = fo " OF.(1)dr, @)

where F_(7) is the z component of F(z). For the instanta-
neous time-dependent flux ®(F,(¢)), we have assumed the
mean flux under a static drive ®(A;), given in Fig. 2. The
values of ®,, for different A, has been numerically calcu-
lated starting from the data for static drive and found to be
in good agreement with time-dependent forcing simulation
[horizontal lines in Fig. 4(a)]. The dependence of the
driven flux on the forcing amplitude A; is shown in
Fig. 4. From the figure it is observed that at vanishing
values of A, the flux approaches zero along a bell-shaped
curve [2]. Let us note that the values of ® are bounded
from below by the adiabatic limit ®,4 [black circles in
Fig. 4(b)].

Summarizing, we have shown that many-body atomistic
simulations of nanoscopic flows in confined geometries
with broken spatial symmetry do support evidence of
ratchet effects. In line with previous findings, the intensity
of these ratchet effects is found to grow with increasing

amplitude and decreasing frequency of the external drive
[2]. However, at variance with one-body scenarios,
(i) ratchet effects persist in the presence of significant
layering effects of the density profile, (ii) the mass flux is
consistently larger than the one predicted by a correspond-
ing Langevin equation. This indicates that while the stan-
dard Langevin picture does capture the qualitative features
of ratchet motion (linear response in both weak and strong-
drive regimes), a quantitative prediction of the mass-flux
requires a more sophisticated mapping entailing the pres-
ence of a comoving solvent. Clearly, this level of informa-
tion is not available in advance in a simple single-body
picture. The onset of ratchet motion is found to associate
closely with the condition that the molecular flight time
along the channel be smaller than the diffusive time across
it and the flux is upper bounded by its adiabatic value.
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