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Millimeter-sized air bubbles rising through still water are known to exhibit zigzag and spiral oscillatory
trajectories. We present a system of four ordinary differential equations which effectively model these
dynamics. The model is based on Kirchhoff’s equations and several physical arguments derived from our
experimental observations. In the framework of this model, the zigzag and the spiral motions result from
the same underlying bifurcation to wake instability.
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Oscillatory movement is a common behavior of a body
in motion with respect to its fluid environment: a coin
settling to the bottom of a fountain, a piece of falling paper,
the flutter of an aircraft wing. The body experiences hydro-
dynamic forces which depend on the body’s motion and
concurrently change that motion. These nonlinear interac-
tions are responsible for the zigzag and spiral trajectories
of small bubbles rising through a still liquid. Such bubble
path instabilities have fascinated researchers for centuries,
and yet a satisfactory understanding of the underlying
physical mechanisms has been elusive.

A number of experimental and numerical studies have
revealed the following essential features of the dynamics of
a millimeter-sized air bubble rising in water. (We caution
the reader that certain experimental conditions such as
large diameter bubble generation tubes and surface-active
fluid contaminants may dramatically change bubble behav-
ior [1]; hence, the following description as well as our
model may not apply in these situations.) The bubble first
rises along a straight vertical line and then develops a
zigzag motion confined to a vertical plane which subse-
quently evolves into a spiraling circular motion, at the
same frequency as the preceding zigzag [1–8]. Such a
bubble trajectory measured in our own experiments [8,9]
is shown in Fig. 1. Throughout these dynamics, the bubble
maintains an oblate ellipsoidal shape. Observations of the
flow in the bubble wake reveal that, the moment the path
begins to diverge from vertical, the flow bifurcates from an
axisymmetric shape to a pair of long thin vortices reminis-
cent of the wing-tip vortices produced by an airplane [3–
7]. It has been suggested that the wake forms when vor-
ticity production around the bubble exceeds a threshold
beyond which the axisymmetric wake no longer evacuates
vorticity at a sufficient rate [5,6]. The two wake vortices
rotate in opposite directions and align their rotation axes
parallel to the path. During the zigzag, the wake vortices
break and reform with reversed sense of rotation every time
the bubble passes near the inflection point of the zigzag
motion [4,6]. During the spiral, the wake is continuously
generated. Although it is not universally accepted, many
researchers have speculated that the wake vortices effec-

tively pump fluid in a direction normal to the bubble path,
which induces a lift force on the bubble in the opposite
direction. Our experiments indicate that this lift force plays
a crucial role in the oscillatory path instabilities.

Bubble path instabilities occur when the Reynolds num-
ber (Re � 2RU=�, R equivalent spherical radius, U speed,
� liquid viscosity) of the bubble exceeds a threshold of the
order of 103. At such values, the system is a very complex
two-phase flow. This makes analytical treatment of the full
problem unfeasible. Furthermore, a direct numerical ap-
proach may be possible, but not without significant com-
putational resources [6,10]. In this Letter, we present a
phenomenological model which condenses observations
about the wake and forces acting on the bubble into a set
of four ordinary differential equations (ODEs) which ac-
count for the zigzag and spiral path instabilities. Successful
models of free falling plates and strips have used a similar
approach (e.g., [11,12]).

The starting point for our model is provided by
Kirchhoff’s equations. Derived from a Lagrange principle
applied to the kinetic energy of the fluid displaced by a
submerged body, Kirchhoff’s equations specify the angular
and linear velocity of the body in terms of the torques and
forces, such as drag, lift, and buoyancy, acting upon it (e.g.,
[10,13]). In the limit of vanishing Reynolds numbers, the
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FIG. 1 (color online). (a) An example (from experiments) of a
bubble trajectory undergoing zigzag and then spiral motions.
(b) Illustration of bubble coordinate system.
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hydrodynamical forces acting on the body are explicitly
determined (e.g., [14]). As the Reynolds number grows to
finite values, these forces must be modified based largely
on empirical evidence in order to account for more com-
plex dynamics [15,16]. In the same tradition, our model is
based on experimental observations of forces, notably with
a wake-dependent lift force.

Kirchhoff’s equations for an ellipsoidal bubble are [9]

 A 11
dU
dt
� F1; �3A11U � F2; ��2A11U � F3;

(1)

 D ii
d�i

dt
� �i; �i � 1; 2; 3�; (2)

where ��1;�2;�3� is angular velocity. The added mass
and added rotational inertia tensors are A and D, respec-
tively. The components of forces and torques, respectively,
on the bubble are Fi and �i. We assume forces consisting
of drag FD, buoyancy FB, and lift FL. The 1, 2, and
3 directions define a coordinate system—see Fig. 1(b)—
which rotates with the bubble. The 1 direction is defined by
the direction of the bubble velocity. The 2 direction is
orthogonal to the 1 direction and such that the 1-2 plane
is vertical. The positive 2 direction coincides with the
2 component of buoyancy. Finally, the 3 direction is or-
thogonal to the 1 and 2 directions and, hence, is always
horizontal. Quantities are evaluated in the lab frame
(Galilean) and projected onto this right-handed,
Cartesian, coordinate system. The six equations (1) and
(2) are reduced to three using the observational constraint
that the short axis of the ellipsoidal bubble remains aligned
with the bubble path [6,7], so that

 �1 �
d�
dt

cos�; �2 �
d�
dt

sin�; �3 � �
d�
dt
;

(3)

where � is the pitch angle of the path, and � is the
azimuthal angle between a fixed horizontal line and the
horizontal projection of the 1 direction. Applying this
constraint, we are left with

 A 11
dU
dt
� FD � FB1; (4)

 �
d�
dt

A11U � FL2 � FB2; (5)

 �
d�
dt

sin�A11U � FL3: (6)

To proceed further, the buoyancy, drag, and lift forces must
be expressed in terms of the dynamic variables U, �, and
�. The components of buoyancy are FB1 � �Vg cos� and
FB2 � �Vg sin�, where � is liquid density, g acceleration
due to gravity, and V bubble volume. The drag is taken to
be FD � �

1
2CD��R

2U2, where Moore’s theory [17] for

high Reynolds number bubbles prescribes the drag coeffi-
cient CD��;Re�. The bubble aspect ratio (ratio of the long
to the short axis) is ��U;R; �; ��, and � is the surface
tension of the air-water interface. As the bubble velocity
varies, so does the instantaneous Reynolds number and �
and, hence, the drag force [18]. We note that Moore’s
theory [17] correctly predicts experimentally measured
drag (within 1% for spiral, 8% for zigzag), although it is
not strictly valid for the dynamical conditions present in
our model and should be viewed only as an effective means
of estimating drag. Unlike drag, no theory or quantitative
model exists for the lift force. In Fig. 2(a), we present our
experimental measurements of the lift force as a function
of bubble speed during the entire trajectory shown in
Fig. 1(a). The lift force is zero until the zigzag begins at
a critical speed of about 36 cm=s. During the zigzag, the
lift shows cyclic hysteretic behavior: Nonzero lift persists
while the velocity drops below 36 cm=s, finally settling at
a constant lift of about 20 �N at a speed less than 35 cm=s
for the spiral (see also Fig. 3). We suppose that the lift force
is tied to the state of the wake as discussed above and that
the wake bifurcation occurs when the vorticity production
surpasses a critical value. The vorticity generated at the
free-slip boundary of a bubble increases when either the
bubble speed or the surface curvature is increased and may
be estimated as !�U	, where 	 is the surface curvature
(e.g., p. 366 in Ref. [20]). For an ellipsoidal bubble, most of
the vorticity is generated around its middle where the
curvature is greatest 	� �5=3=R (from geometrical con-
siderations). We thus require that the lift force grows when
! � U�5=3=R exceeds a critical value !c. While we em-
phasize that the nature of this bifurcation remains open to
debate, we propose that it is subcritical. We are led to this
proposition by the hysteresis shown in Fig. 2(a) as well as a
second experimental observation [Fig. 2(b)], which reveals
an abrupt increase in the amplitude of path oscillations for
increasing bubble size. Furthermore, Mougin and
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FIG. 2. (a) Evolution of the lift force with bubble speed during
an experimental bubble trajectory (gray scale: dark at t � 0,
light at t � 2 s, dark at t � 4 s). (b) (Experimental) amplitude of
path oscillation increases abruptly for increasing bubble size.
(c) Subcritical bifurcation illustration for lift FL vs vorticity
production !.
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Magnaudet have shown numerical evidence for a subcrit-
ical transition to path instability with increasing � and
fixed volume [6]. On the other hand, Mougin and
Magnaudet have also shown that, for increasing volume
and fixed �, the transition is supercritical, which may
explain the fact that fixed � bodies (e.g., solid spheres)
are observed to have a supercritical transition to the two
vortex wake. We thus model the evolution of the lift force
with a dynamical equation having the structure of a sub-
critical bifurcation, namely,

 

d
dt

FL
FL0
� k

FL
FL0
� k0

��
FL
FL0

�
3
�

�
FL
FL0

�
5
�
; (7)

with k � �!�!c�=!c and k0 � �!c �!0�=!c. The low-
est stable, nonzero lift force is FL0, and the corresponding
! value is !0, as illustrated in Fig. 2(c). Finally, rewriting
Eqs. (4)–(6) in terms of the dynamic variables, we obtain
the set of ODEs

 

dU
dt
� �

3CDU2

8CMR
�
g cos�
CM

; (8)

 

d�
dt
� �

g sin�
CMU

�
FL cos�
�VCMU

; (9)

 

d�
dt
�

FL sin�
�VCMU sin�

; (10)

 

dFL
dt
�

1




�
U�5=3=R�!c

!c
FL � k

0 F
3
L

F2
L0

� k0
F5
L

F4
L0

�
; (11)

where CM � A11=�V is the added mass coefficient for
motion parallel to the short axis of the bubble. The angle
� specifies the projection of the lift force onto the 2 and
3 directions. Physically, � is related to the orientation of
the plane which contains the two wake vortices; it is the
angle between this plane and the plane defined by the 1 and
3 directions. During the zigzag, FL3 is zero (the motion is
planar), so that � � 0 and FL2 � FL. During the spiral,
neither lift component is zero and both are steady in time:
FL2 � FL cos�, FL3 � FL sin�, with � constant. In the
lift force equation, 
 is a characteristic time for growth or
decay of the wake. We suppose 
 is an advective time scale


 � R=Ua, with Ua given by a balance of drag and buoy-
ancy Ua � R2g=�, so that 
 � �=Rg.

We now compare details of the model behavior to ex-
perimental measurements. In our experiments, an ultra-
sound device and a camera are used to make precise
measurements of the bubble trajectories as they rise
through 2 m of water. The bubbles are generated with a
small diameter tube (0.3 mm) to ensure an ellipsoidal shape
(‘‘pinch-off method’’ according to Ref. [1]). The details of
the method and procedures are presented in Ref. [9]. We
first provide a brief summary of our experimental findings
as well as some from other studies, restricting attention to
ellipsoidal bubbles generated from a small tube in rela-
tively clean water. Zigzag and spiral motions are observed
when the bubble volume exceeds 3:82 mm3 (i.e., R>
0:97 mm) [9,19]. The zigzag is sinusoidal motion confined
to a vertical plane, 5–10 mm in amplitude and about 5 Hz
in frequency [1,2,4,6,8,9]. The speed of a zigzagging bub-
ble oscillates between its terminal speed (maximum speed
at the end of the straight rise), about 36 cm=s, and
1–2 cm=s slower. Bubbles are more commonly observed
to spiral than zigzag, and a bubble which first zigzags
always spirals eventually. Projected onto a horizontal
plane, fully developed spiral motion is circular, 5–10 mm
in radius [1–9], and at the same frequency as the preceding
zigzag [8,9]. The speed of the spiraling bubble is constant
and 1–2 cm=s slower than the terminal speed.

We first consider the model predictions when � is set to
zero. In the numerical implementation of the model, the
only free parameters are FL0 � 20 �N, !0 � 1:13�
103 l=s, and !c � 1:17� 103 l=s, which are inferred
from the experimental measurements—Fig. 2. Figure 3
shows bubble speed, lift forces, and horizontal bubble
position for an entire experimental trajectory (left) and
the numerical results for � � 0 (middle). One indeed
observes a straight rise followed by a zigzag motion
(wake reversals which occur during the zigzag and change
the direction of the lift are implemented numerically by
changing the sign of FL once each time it drops below a
small threshold value). Compared to the experiment, we
find very good agreement for the period of oscillation, the
amplitude of motion, and the magnitude of the lift force.
Note that it is the response time in the velocity equation

U � 8CMR=3CDU� 0:1 s which sets the characteristic
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FIG. 3. (a) Bubble speed, (b) lift (FL2,
black line; FL3, gray line), and (c) hori-
zontal position for (left) an experimental
bubble trajectory, (middle) a model time
series during zigzag (� � 0), and
(right) a model time series during spiral
(� � 0:88).
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period of oscillation, rather than the advective time 
 �
�=Rg� 10�4 s.

In Fig. 3 (right), the model equations are solved with
� � 0:88; all other parameters are unchanged. We find that
the motion indeed evolves into a spiral quite similar to that
observed in experiments. The value of � was chosen based
on our experimental measurements of � during the spiral
state, which ranges between 0.85 and 1 for bubbles with the
radius between 1 and 1.12 mm. By solving the model
equations in the steady spiral state, we uncover a link
between � and the spiral frequency. One obtains _� �
g tan�=CMUs, with Us the steady spiral velocity.

Figure 4(a) shows the total magnitude of the lift force as
a function of bubble speed for the model. This result may
be compared with the experimental data presented in
Fig. 2(a). In both the experiment and the model, it is clear
that, in the spiral state, the lift force persists at a lower
speed than the speed at which the path became unstable.
During the zigzag, the bubble makes loops in the FL-U
plane, finally settling to a point during the spiral. In the
context of the model, the underlying physics is the follow-
ing. As long as the angle � is zero, an increase in lift force
necessarily leads to a decrease in velocity. Changes in FL
drive changes in the pitch angle �, which, in turn, drive
changes in the speed U. But, when � becomes nonzero, a
fraction of the lift force is diverted into driving changes in
� instead of �. This shift of FL partially into FL3 is what
allows the lift force to persist at a lower velocity in the
spiral state. Finally, in Fig. 4(b), we present the onset and
amplitude oscillatory motions of the model, which com-
pare favorably with our experimental measurements shown
in Fig. 2(b). Note that the largest bubble size for which a
zigzag (squares) exists as a solution to the model is about
1 mm, and the smallest size with a spiral solution (circles)
is about 0.98 mm. Although these limits may be artifacts of
the model, they might also point to the reason that experi-
ments typically see zigzag motion followed by spiral mo-
tion and never the reverse.

To conclude, we have presented a simple dynamical
system of four ordinary differential equations which effec-
tively reproduce the zigzag and spiral motions of
millimeter-sized ellipsoidal air bubbles rising in water.
We present good qualitative and quantitative agreement
with experimental measurements of zigzag and spiral
path oscillation amplitude, frequency, as well as dynamics
of lift forces. Future improvements may entail a fifth ODE
governing �, i.e., the nontrivial dynamics of the relative
magnitudes of FL2 and FL3 (see Fig. 3). Furthermore, a
more realistic drag force likely depends on the wake dy-
namics, analogous to the lift force.

We appreciate Jacques Magnaudet’s helpful advice on
Kirchhoff’s equations. This work was partially funded by
the Région Rhône-Alpes, under Emergence Contract
No. 0501551301.
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FIG. 4 (color online). (a) Magnitude of lift force as a function
of bubble speed during a model trajectory. (b) Amplitude of
model path oscillations for a range of bubble sizes (�, zigzag;
	, spiral).
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