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Considering the coherent nonlinear dynamics between two weakly linked optical waveguide arrays, we
find the first example of coexistence of Josephson oscillations with a novel self-trapping regime. This
macroscopic bistability is explained by proving analytically the simultaneous existence of symmetric,
antisymmetric, and asymmetric stationary solutions of the associated nonlinear Schrédinger equation. The
effect is illustrated and confirmed by numerical simulations. This property allows us to conceive an optical
switch based on the variation of the refractive index of the linking central waveguide.
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Introduction.—Since its prediction in 1962 [1], imme-
diately followed by an experimental verification [2], the
Josephson effect has been widely applied in various
branches of physics. It is a macroscopic quantum tunneling
effect, originally discovered in superconducting junctions,
caused by the global phase coherence between electrons in
the different layers. Similar Josephson oscillations have
been discovered in liquid helium [3,4] and in double layer
quantum Hall systems [5,6].

The first experimental observation of a bosonic
Josephson junction has been made for a Bose-Einstein
condensate embedded in an optical lattice [7], and very
recently it was realized for a macroscopic double well
potential [8]. The difference with the ordinary Josephson
junction behavior is that the oscillations of population
imbalance are suppressed for high imbalance values and
a self-trapping regime emerges [9,10].

The nonlinear dynamics of bosonic junctions, described
by the Gross-Pitaevskii equation (GPE) [11], is usually
mapped to a simpler system characterized by 2 degrees
of freedom (population imbalance and phase difference),
while the nonlinear properties of the wave function within
the single well are neglected. In this approach, the sym-
metric and antisymmetric stationary solutions of GPE are
used as a basis to build a global wave function [12,13]. This
description allows one to show that for higher nonlineari-
ties the symmetric solutions become unstable and degen-
erate to an asymmetric stationary (approximate) solution of
GPE corresponding to a new self-trapping regime [14,15].

The optical realization of a bosonic junction had been
theoretically proposed much earlier by Jensen [16], who
considered light power oscillations in two coupled non-
linear waveguides, which actually realizes Josephson os-
cillations in the spatial domain where the governing model
is the nonlinear Schrodinger equation (NLS).

Considering the two weakly linked optical waveguide
arrays in Fig. 1 with light injected in one array, we dis-
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cover, in a wide range of input intensity, that light can
either remain trapped in this array or swing periodically
from right to left and back as shown by the intensity plot in
Fig. 2. The switching from one state to the other is trig-
gered by a slight local variation of the refractive index of
the central linking waveguide. The coexistence of oscilla-
tory and self-trapping regimes corresponds to the simulta-
neous presence of Josephson oscillations and an
asymmetric solution of the NLS.

Our result differs from known behaviors of bosonic
Josephson junctions, where the presence of oscillatory or
self-trapping regimes is uniquely determined by the pa-
rameters of the system. The resulting switching property is
likely to have a straightforward experimental realization in
waveguide arrays, which constitute truly one-dimensional
systems and are particularly convenient for observation of
nonlinear effects. Indeed, many experimental realizations
have revealed nice nonlinear properties, such as soliton
generation and guiding; see, e.g., [17-23].

Model and numerical simulations.—An array of adja-
cent waveguides coupled by power exchange is modeled

N '/////N

FIG. 1. The two weakly linked waveguide arrays: The refrac-
tive index of the central waveguide is smaller than the indices of
the waveguides in the two arrays. The inset displays the elemen-
tary cell with the coupling constant Q.
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FIG. 2 (color online). Numerical simulation of the DNLS
Eq. (1) with initial condition (3) and parameters (2). By a slight
local variation at z = 150 of the refractive index of the central
waveguide, represented in the inset in terms of the relative
barrier height V,, the regime switches from self-trapping to
Josephson oscillations. The injected total power is P, =

S lgl> = 1.44.

by the discrete nonlinear Schrodinger equation (DNLS)
[24,25], which reads

b
aizj + %(nj =) + QW + i1 — 2¢)

+ |l =0, (D)

i

where waveguide discrete positions are labeled by the
index j (— N = j = N), and the complex field ¢; results
from the projection of the electric field envelope on the
eigenmode of the individual waveguide. It is normalized to
a unit on-site nonlinearity. The linear refractive index n; is
set to n for all j # 0 and to ny < n for j = 0. The coupling
constant between two adjacent waveguides is Q, and w
and c are the light frequency and velocity, respectively.
Vanishing boundary conditions ¢y = ¥_y—1 =0
model a strongly evanescent field outside the waveguides.

Written for two waveguides, the above equation reduces
to the one considered by Jensen [16] for the elementary cell
in Fig. 1. In that case, for a beam of small intensity, light
tunnels from one waveguide to the other and then back,
inducing Josephson oscillations [9,10]. Increasing the in-
put intensity, above some critical value, light becomes self-
trapped in one waveguide, a behavior characteristic of
bosonic junctions.

We demonstrate now by numerical simulations of
model (1) that, for the device in Fig. 1, the two regimes,
namely, Josephson oscillations and self-trapping, coexist
for a given injected beam intensity and given parameter
values, the switch from one state to the other being ob-
tained by a tiny local variation of the refractive index of the
central waveguide.

Let us choose the following values for the parameters in
Eq. (1):

N=14, Q0=16, wn—ny/c=Vy=20, (2)
together with the following input light envelope:
#;(0) = 0.4sin[(N + 1 — j)/5.5], j=1---N,
#;(0) = 0.2sin[(N + 1 + j)/5.5], j=—N,---0,
3)

which represents a beam mostly sent into the right wave-
guide array. The result is displayed in Fig. 2. While the
relative refractive index V, of the central waveguide is kept
constant, the power injected initially into the right part of
the array remains self-trapped. At z = 150, a local varia-
tion of V|, drawn in the inset in Fig. 2, makes the self-
trapping state bifurcate to a regime of Josephson oscilla-
tions, which then remains stable and demonstrates a novel
bistability of the coupled array.

Theory.—We shall now interpret these results in terms of
the continuum limit of model (1). Considering 1/+/Q as
being a virtual grid spacing, we may represent ;(z) by the
function (x, z) in the continuous variable x = j//O. As a
result, the DNLS model (1) maps to the NLS equation

2
v P =0, @)

dz  dx
where V(x) is a double well potential with a width 2L =
(2N + 2)/+/Q, represented in Fig. 3. The potential barrier
has height V,, and width 2/ = 1/,/Q, and we assume, for
technical simplification, that the Schrodinger equation is
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FIG. 3 (color online). Plot of the double well square potential
for the continuous model (4): 2L is the well width; V,, and 2/ are
barrier height and width, respectively. The curves are the plots of
different types of solutions obtained for the total power P, =
1.44. The inset shows the form of the asymmetric solution for
different values of the total power.
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linear inside the barrier. Numerical simulations are per-
formed with a fully nonlinear array.

The stationary solution of (4) is sought as ¢(z, x) =
®(x) exp(—iBz), with a real-valued function ®(x) found
in terms of Jacobi elliptic functions [26]

® = Ben(yg(x + L) — K(kg), kg)
® = ge + be M, A=V,-B
® = Acn(y,(x — L) + K(ky), ky)

(L <x< -,
(—l<x<l),
(I<x<L), (5

with the parameters given in terms of the amplitudes by

—JA2+ B, v = /B> + B, (6)

A2 , B?

2 — =
“Taee Ty

(N
where B is an eigenmode of a single waveguide (8 < V)
and where [ denotes the complete elliptic integral of the
first kind. By construction, the above expressions verify the
vanishing boundary values in x = *£L.

The solutions are then given in terms of five parameters
(A, B, a, b, and B), four of which are determined by the
continuity conditions in x = =/. Thus, the conserved total
injected power P, = [ |¢|*dx completely determines the
solutions. Another useful conserved quantity is the total
energy E given by

E=f<|%‘ V)~ "“4> v (®)

In the weakly nonlinear limit (small P,), the solutions are
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FIG. 4 (color online). Dependence of the amplitudes [maxi-
mum values A and B of the expressions (5)] of the symmetric and
asymmetric solutions on the total power (the amplitudes of the
odd and even symmetric solutions almost superpose). The inset
displays the relative energy difference of the symmetric (d,)
and asymmetric (®,) solutions in terms of the total power.

symmetric (odd or even). The even solution ® (x) corre-
sponds to A = B in (5) when the solution in the barrier
region is 2a cosh(Ax). The odd solution ® _ (x) corresponds
to A = —B with central solution 2a sinh(Ax). For higher
powers, namely, above a threshold value, an asymmetric
solution ®,(x) also exists for which A # *B. These ana-
lytical solutions are represented in Fig. 3.

To plot the solutions, we stick with the parameter values
which follow from (2): The width of the rectangular double
well potential is 2L = 7.5, the barrier width is 2/ = 0.25,
and its height is V; = 20. We derive the complete set of
solutions (5) and display the dependence of their ampli-
tudes on the total power P, = [ [¢/|*dx in the main plot in
Fig. 4. Below the threshold value P, = 0.9, only the sym-
metric (odd and even) solutions exist and their amplitudes
almost superpose. At the threshold value, a new solution
appears which is asymmetric with amplitudes A and B in
the two arrays represented by the upper and lower branches
in Fig. 4.

The existence of the asymmetric solution founds the
existence of the self-trapping regime displayed in Fig. 2.
The regime of Josephson oscillation is based on the
coupled mode approach as follows. Using the symmetric
and antisymmetric basic solutions, one builds a variational
ansatz by seeking the solution (z, x) under the form

Pz, x) = 1 (D) Py (x) + ¢ (2) Py (),

&)
V20, =D, + D, V20, = b, — D,

The functions [, (z)|* and |¢,(z)|* are interpreted as the
probabilities to find the light localized on the left or right
arrays. By construction, the overlap of ®; with @, is
negligible; consequently, the projection of the NLS
Eq. (4) successively on ®@; and ®, provides the coupled
mode equations [9,16]

a‘/fl a‘/’

2
e + DIy Py = ripy,

(10)

+ DIy P, = rip,

with coupling constant r and nonlinearity parameter D
defined by

_ JI0,®)(3,D,) + VP, P, ]dx
fCD%dx ’

_ [ dldx
f(D%dx'

An explicit solution of (10) in terms of Jacobi elliptic
functions has been found in Ref. [16] and used in Bose-
Einstein condensates in Ref. [10]. It is a good approxima-
tion for the system in a double harmonic potential well [15]
and correctly describes the oscillatory regime in our case.
Indeed, when the power is initially injected into one array,
say, i, (0)] = 1, |4,(0)| = 0, we obtain for D < 4r

1 D
|l//1|2 = 2[1 + Cn<2rz, 4r>i|,

lynl? =1 — |y |~
(11)
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Since || oscillates around the value 0, this expression
describes an oscillation of light intensity between the left
and the right array. The period of this oscillation is

T =2K(D/4r)/r (12)

and has been checked on various numerical shots at differ-
ent total input power. In summary, while the self-trapping
regime is directly interpreted in terms of the asymmetric
solution, the interpretation of the Josephson oscillation
regime needs to call to the coupled mode approach, which,
in turn, fails to explain the observed coexistence of both
regimes.

Such a coexistence, however, is understood in terms of
the energy (8) which can be evaluated, at given total power
P,, on the one side for the symmetric solution ®, and on
the other side for the asymmetric solution ®,. As shown in
the inset in Fig. 4, these two energy values E; and E,
result to be very close up to the total power value P, = 2.
Consequently, switching from one regime to the other is
allowed at fixed power. In particular, in the numerical
experiments in Fig. 2, the total power and energy are the
same before and after the local variation of the refractive
index of the central waveguide.

It is worth noting that a similar analysis in the case of
harmonic double well potential [14,15] shows that the
energy of the asymmetric solution (if it exists) is signifi-
cantly smaller than the energy of the symmetric solution.
In such a situation, it thus is impossible to switch from a
self-trapped state to an oscillatory regime when keeping
the energy and total power constant.

Conclusion.—A new coherent state in weakly linked
waveguide arrays has been discovered. This coherent state
has the property of being bistable, and one can easily
switch from oscillatory to self-trapping regimes and
back. In the region of injected power where the asymmetric
solution coexists with the symmetric and asymmetric sta-
tionary solutions, we have induced the switch from one
regime to the other by varying the height of the barrier, that
is, e.g., by introducing a defect in the central waveguide. In
view of a real experiment, one could induce such flips by
other methods, for instance, by applying external local
perturbation such as a variation of the profile of the injected
power.
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