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We obtain perturbative expressions for jet distributions using soft-collinear effective theory (SCET). By
matching SCET onto QCD at high energy, tree level matrix elements and higher order virtual corrections
can be reproduced in SCET. The resulting operators are then evolved to lower scales, with additional
operators being populated by required threshold matchings in the effective theory. We show that the
renormalization group evolution and threshold matchings reproduce the Sudakov factors and splitting
functions of QCD, and that the effective theory naturally combines QCD matrix elements and parton
showers. The effective theory calculation is systematically improvable and any higher order perturbative
effects can be included by a well-defined procedure.
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Calculating the distribution of jets in collider experi-
ments is essential for understanding the standard model
and in looking for signals of new physics. Unfortunately,
improving the accuracy of a calculation is not simply a
matter of computing higher loop QCD diagrams by brute
force. These calculations produce large logarithms, which
must be resummed. Moreover, fixed order calculations are
only feasible for a modest number of partons. For com-
parison with experimental data, however, it is desirable to
obtain theoretical predictions for processes with a much
larger number of final-state particles. The traditional
method is to produce the required distributions using split-
ting functions, which are derived in the limit of small
transverse momentum. In this limit, distributions factorize
into lower order processes, multiplied by the classical
probabilities for particles to branch. The probability for
no branching is given by a Sudakov factor, which is simply
an integral over the splitting functions, and sums the lead-
ing logarithmic (LL) terms. Several programs use this
method of parton showers to generate distributions with
an arbitrary number of final states and are valid at LL [1,2].
Since the underlying assumption in parton showers is small
transverse momentum, additional information from QCD
matrix elements is required to properly describe jets which
are widely separated.

The issue of consistently matching fixed order QCD
calculations with parton shower evolution has been the
source of active research over the past several years [3–
5]. One must avoid double counting between emissions
described by QCD matrix elements and those contained in
the splitting functions, and cancel the infrared divergences
between real and virtual QCD diagrams. Most programs
include some hard matrix element corrections [6,7]; how-
ever, there is no systematic way to improve their accuracy.

Fundamentally, the problem of jet distributions is one of
scale separation. These scales include the hard scale Q of
the underlying interaction, and the scales p�i�T for the rela-
tive transverse momenta of additional partons. Thus, it
seems natural to reformulate the problem in the language
of effective field theory, where scales are naturally sepa-

rated. The appropriate effective theory for this problem is
the soft-collinear effective theory (SCET) [8]. As we will
show, the information of fixed order QCD is contained in
SCET by a matching calculation at the hard scale Q, while
the summation of the large logarithms is achieved by
renormalization group (RG) evolution within SCET.
Furthermore, in contrast to other approaches, the effective
theory allows us to systematically incorporate higher order
effects by straightforward and well-defined calculations.

The matching at the hard scale involves determining the
Wilson coefficients of SCET operators such that matrix
elements in the effective theory reproduce the full theory
up to a fixed order in �s. Because all the infrared physics of
the full theory is reproduced in SCET, the matching co-
efficients will be finite at any order in �s. To reproduce
QCD with N partons requires operators with up to N fields
in the effective theory. To calculate this matching, of
course, requires knowledge of QCD matrix elements with
up to N partons in the final state.

After the matching, full QCD is no longer needed. The
next step is to evolve the operators in SCET to lower scales
using the RG. This sums the large logarithms and, as we
will show, it reproduces the Sudakov factors at LL.
Lowering the renormalization scale in SCET corresponds
to lowering the value of pT accessible to fields in the
effective theory. As the scale gets lowered below the pT
of one of the partons in the final state, the emission of this
parton is no longer described by the interactions of SCET.
To ensure that the theory still describes the same physics, a
threshold matching is required which gives rise to new
operators with additional collinear fields. This matching
involves SCET matrix elements for emission, which give
splitting functions in the collinear limit.

For more details, we need to understand the basic con-
struction of SCET. We want to describe the long distance
behavior of QCD matrix elements with several energetic
partons in well-separated directions. To achieve this, SCET
requires collinear fields for each of these directions, as well
as soft fields they can interact with. Collinear fields �n are
labeled by a lightlike direction n� and have energy much
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larger than the momentum transverse to n�, E� p?.
Collinear fields in SCET appear in operators as jets �n
which are fields wrapped in Wilson lines

 �n � Wn�n: (1)

The Wilson lines ensure gauge invariance of the theory. For
example, a two jet operator is

 O 2 � ��n�� �n � ��nW
y
n�W �n� �n; (2)

where � denotes some Dirac structure. To correctly de-
scribe full QCD with up to N jets in different directions
requires operators in SCET with up to N collinear fields,
each with their own label n�i .

Since the sum of a number of collinear momenta is
still collinear, there are interactions in SCET among par-
ticles collinear to each direction n�i . Particles collinear to
different directions do not interact directly, but can ex-
change soft gluons. The RG evolution in the theory, from
higher to lower p?, resolves the transverse momentum of
jets. It physically disassembles jets into their partonic
constituents.

In this Letter, we will study as an example the canonical
process e�e� ! hadrons [for more details, see [9] ], with
center-of-mass energy denoted by Q. As mentioned above,
the full matrix elements are matched onto SCET at the hard
scale Q, while the RG evolution in the effective theory
sums the logarithms. To begin, we only include the QCD
matrix element with 2 partons in the final state, which
allows us to focus on running. In this case, additional
partons arise from SCET emissions through the threshold
matching. Thus, the results will only be valid in the limit
Q� p�1�T � p�2�T � . . . , where p�i�T denote the transverse
momenta between particles in the final state. Note that this
is the same limit in which parton showers are known to
hold. Because the effective theory includes the RG evolu-
tion, it will correctly sum all the logarithms of ratios of
these scales.

The matching condition is

 hQCDjq �qiQ � �C2���hO2jq �qi���Q; (3)

where hQCDjq �qi denotes the fixed order matrix element of
the current �q�q. For particular final-state momenta q�, we
define �njqi � 0 if n� is not aligned with q�. That is, the
matrix element is nonzero only if n� � q�=Eq. Then the
matching is trivial and

 C 2�Q� � 1: (4)

Having performed this matching, we can focus on the
resummation of the large logarithms. This is achieved by
running the operator O2 below the scale Q. The Wilson
coefficients satisfy the RG equation d logCn���=d log� �
�n���, which has the solution

 

Cn��2�

Cn��1�
	 �n��1; �2� � exp

�Z �2

�1

d�
�
�n���

�
: (5)

�n is an evolution kernel which is similar to the Sudakov
factor in traditional parton showers. The anomalous dimen-

sion �2 can be calculated by simple one-loop diagrams in
SCET [10], giving

 �2��� � �
�s���
�

CF

�
log
��2

Q2 �
3

2

�
; (6)

where CF � 4=3. Note that it is only the logarithmic term
in the anomalous dimension which gives rise to the LL
resummation. The constant term 3=2 gives rise to a subset
of the subleading logarithms and can thus be omitted if
only LL accuracy is desired. To obtain the complete NLL
result, the coefficient of the log�=Q term is required at two
loops. Higher orders in the resummation can straightfor-
wardly be included by calculating the anomalous dimen-
sions at even higher loop order.

At a scale pT a third parton can be resolved in one of the
jets. Below that scale the matrix element of O2 with the
three partons vanishes and a threshold matching onto a new
operator O�2�3 has to be performed (the superscript indicates
that this operator arises through threshold matching). The
matching condition is

 �C2���hO2jq �qgi���pT�� � �C
�2�
3 ���hO

�2�
3 jq �qgi���pT��:

(7)

Emissions in SCET can be collinear or soft, and the col-
linear gluon can either be radiated from the collinear quark
(antiquark), ��n�� �n�, or it can be emitted by one of the
Wilson lines, Wyn �W �n�. There are some ambiguities in
calculating the matrix elements in SCET, which will only
affect higher order contributions if incorporated consis-
tently. Here, we will take the additional gluon in the final
state to be collinear, since soft gluons have much smaller
p? than collinear gluons. We also use the fact that the
emission of a collinear gluon from the collinear Wilson
line will give rise to longitudinally polarized gluons (up to
higher orders in pT=Q). Thus, to calculate the matrix
element of O2 in Eq. (7) we include only the emission
from the collinear fermions and keep only transverse gluon
polarizations �?. With these conventions Eq. (7) is satis-
fied by C�2�3 �pT� � C2�pT� and

 hO�2�3 jq �qgi�gs ��nq

�
6�?

�n6 �q

2 �

�n �q 
 �pq�pg�
�

�
�n6 q
2 6�
?

�nq 
 �p �q�pg�

�
�n �q

:

(8)

Note that we choose to integrate out emissions from both
the quark and the antiquark at the same scale pT . In
general, the transverse momentum of the gluon with re-
spect to the quark can differ from the one with respect to
the antiquark, and one could choose to integrate out each
emission at these different scales. However, the difference
between these scales is subleading in pT=Q, and thus
beyond the order we are working.

This procedure of matching and running is continued for
each value of p�i�T . A closed form expression can be ob-
tained for the anomalous dimension of a general operator
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On which contains nq quark and ng gluon fields. At leading
order

 �n � �
�s���
�

log
�2

Q2

�nf
2

CF �
ng
2

CA

�
; (9)

and the solution to the RG equation is given by Eq. (5). At
leading log accuracy the evolution kernels for the Wilson
coefficients are directly related to the Sudakov factors for
quarks and gluons, �q and �g, used in traditional parton
showers [2,11]

 �n��2; �1� �
LL

�
nq=2
q ��2; �1��

ng=2
g ��2; �1�: (10)

The threshold matching can be continued for additional
emissions. In general, the rule for quark splitting in SCET
can be written as

 �n ! gs
n6
2

�6�?

n 
 �p �q � pg�
�n0 ; (11)

where the ���� is for fermions (antifermions). A similar
equation can be obtained for gluons splitting into two
gluons or two fermions. New operators O�2�m are thus ob-
tained by replacing each collinear field in O�2�m�1 with
Eq. (11) and summing over all contributions. Note that
the operators O�2�m are sums over many different terms, each
giving different splitting histories, just as the operator O�2�3
in Eq. (8) is the sum of splittings of the quark and the
antiquark.

This sequence of threshold matching and running is
repeated until a low scale � � �0 is reached, where non-
perturbative physics becomes important. At that scale the
amplitude of e�e� ! hadrons is

 hSCETi�0
�
X
m

C�2�m ��0�hO
�2�
m i�0

; (12)

where the evolution of the operators between the various
threshold matching scales is captured in C�2�m ��0�

 C �2�m ��0� � C2�Q��2�Q;p
�1�
T � 
 
 
�m�1�p

�m�3�
T ; �0�:

(13)

To compute differential cross sections, we need to
square this amplitude and sum over final spins of the
fermions and transverse polarizations of the gluons.
Because the operator O�2�m is obtained from the operator
O2 by iterating Eq. (11), we can simplify the form of
jO�2�m j2. To leading order in pT=Q, the result is

 

X
spins;pols

jO�2�m j2 �
X

spins;pols

jO�2�m�1j
2 1

p2
T

P�z�; (14)

where P�z� is a splitting function, and the variable z
denotes the ratio of the energy of the emitted particle to
the energy of the particle it was emitted from. Each emis-
sion of an additional particle gives rise to a splitting
function after the matrix element is squared. Using
Eq. (14) together with Eq. (10), the cross section obtained

from the amplitude hSCETi given in Eq. (12) reduces to the
cross section of e�e� ! q �q scattering, multiplied by prod-
ucts of splitting functions and Sudakov factors. Thus,
SCET is equivalent to the traditional parton shower at
leading order.

Now that we have seen how SCET sums the large
logarithms and showers additional collinear particles, we
can go back and incorporate the QCD matrix element with
an additional gluon in the final state. Thus, we should
include O2 and an operator O3 in the matching at � �
Q. This allows us to describe the differential rate with three
well-separated jets, for any value of p�1�T , and will improve
our previous results such that the resulting distributions are
valid in the limit Q;p�1�T � p�2�T � p�3�T . . . . In order to
obtain the correct normalization of the total cross section
at O��s�, the one loop matching onto the operator O2 is
required at the hard scale as well.

To match onto O3 we calculate matrix elements in QCD
and SCET with three partons in the final state

 hQCDjq �qgi � C2hO2jq �qgi � C3hO3jq �qgi: (15)

The operator O2 and its Wilson coefficient C2 at order �0
s

have already been determined from the matching with two
partons. With our convention for emissions
 

hO3jq �qgi � gs ��nq

�
6�?
6n �q

2
�6n �q 
 �pq � pg�

� �
6n q
2
6�?6n q 
 �p �q � pg�

�
�n �q

; (16)

and then Eq. (15) is satisfied for C3�Q� � 1. This matrix
element vanishes in the limit that the gluon is soft or is
collinear to either the quark or the antiquark. This is again
due to the fact that SCET reproduces the IR of QCD.

To obtain C2 to order �s we again use Eq. (3), but now
calculate the matrix elements in QCD and SCET at one
loop. Since the IR divergences of QCD are reproduced in
SCET, the Wilson coefficient is finite [10]

 C 2�Q� � 1�
�sCF

4�

�
8�

7�2

6
� 3�i

�
: (17)

Even higher order corrections to these Wilson coefficients
can be included by performing the matching at higher loop
order.

After the matching at � � Q, the operators are run
down to a low scale. The running of O3 is identical to
the running of O�2�3 , since running in SCET depends only
on the field content of an operator, not on its tensor
structure. We run both O2 and O3 down to the scale ��
pT , at which point we match O2 onto O�2�3 as before. At
�� pT

 hSCET�3�ipT � C2�2hO
�2�
3 i � C3�3hO3i: (18)

After that, the sequence of running and matching continues
as before, but now with two series of operators: O�2�m ,
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populated by branchings descended from O2, and O�3�m ,
which are descended from O3. The final result at the scale
�0 is

 hSCET�3�i�0
� �3�p

�1�
T ; p

�2�
T � 
 
 
�m�1�p

�m�3�
T ;�0�

 �C2�Q��2�Q;p
�1�
T �hO

�2�
m i

� C3�Q��3�Q;p
�1�
T �hO

�3�
m i�: (19)

Note that this is very similar to what we had in Eqs. (12)
and (13). But it is correct to O��s� and for values of pT that
satisfy Q, p�1�T � p�2�T � p�3�T . . . . It reproduces the three
jet differential cross section at next-to-leading order
(NLO), but also sums all leading logarithms.

The SCET result interpolates between fixed order QCD
and a parton shower. To demonstrate this, it is enough
construct observables based on 3-jet final states. Since
we only need information about the first branching we
should evaluate the matrix elements at a scale of order
pT , and the result is given by Eq. (18). It not hard to see that
Eq. (18) has the right limits. For pT � Q, SCET is an
excellent approximation to QCD and the matrix element of
O3, which represents the difference between QCD and
SCET, vanishes. Also, jhO�2�3 jq �qgij2 reduces to a splitting
function in this limit, as indicated in Eq. (14), and �2

reproduces the LL Sudakov factor, as shown in Eq. (10).
Thus, for pT � Q, SCET reduces to the product of a
Sudakov factor and a splitting function, as in a parton
shower. In contrast, for pT �Q, SCET�3� is very close to
QCD, since SCET has not evolved far from the scale where
we matched it to QCD exactly. Given the results in these
two limits, the effective theory will smoothly interpolate
between QCD and the parton shower. To see this, in Fig. 1
we show the differential thrust distribution for Q �
91 TeV. For three partons, T � maxfEq; E �q; Egg=2Q.
The SCET result is given by squaring (18) and integrating
over the remaining phase space, while for QCD we use the
leading tree level differential cross section. For the parton

shower, we use the splitting functions 1=�pq � pg�
2P�z�,

multiplied by the LL Sudakov factor. We have chosen the
value of the scale �� pT such that the maximum value of
the Wilson coefficients and Sudakov factors is unity.

We have shown that SCET reproduces QCD at NLO,
including full parton showering. There are many ways the
results presented here can be improved: (1) include more
operators at � � Q, (2) include the matching at � � Q to
higher order in �s, (3) include the running of the operators
at subleading order, (4) include the threshold matching in
SCET at higher order, (5) include power corrections from
the SCET expansion. It is important to bear in mind that all
these improvements are straightforward calculations in the
effective theory. For example, to include more operators at
� � Q simply requires additional tree level calculations in
QCD and the effective theory, while to go beyond NLO
only requires the calculation of well-defined loop diagrams
in QCD and SCET. No new formalism needs to be devel-
oped to achieve any of these results. Thus, SCET is a
powerful tool for improving the theoretical understanding
of jet distributions. It provides a convenient systematically
improvable framework for performing higher loop calcu-
lations, and should be straightforward to implement in an
event generator, allowing direct comparison to data.
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FIG. 1 (color online). Thrust distribution in 3-jet events, cal-
culated as described in the text. Note how the SCET result
reduces to QCD at small thrust (large pT) and to the parton
shower at large thrust (small pT).
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