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The work fluctuations of an oscillator in contact with a thermostat and driven out of equilibrium by an
external force are studied experimentally and theoretically within the context of fluctuation theorems. The
oscillator dynamics is modeled by a second order Langevin equation. Both the transient and stationary
state fluctuation theorems hold and the finite time corrections are very different from those of a first order
Langevin equation. The periodic forcing of the oscillator is also studied; it presents new and unexpected
short time convergences. Analytical expressions are given in all cases.

DOI: 10.1103/PhysRevLett.97.140603 PACS numbers: 05.40.�a, 05.70.�a, 07.50.�e, 84.30.Bv

In this Letter, we investigate, within the context of the
fluctuation theorems (FTs), the work fluctuations of a
harmonic oscillator in contact with a thermostat and driven
out of equilibrium by an external force. First found in
dynamical systems [1,2] and later extended to stochastic
systems [3–6], these conventional FTs give a relation
between the probabilities to observe a positive value of
the (time averaged) ‘‘entropy production rate’’ and a nega-
tive one. This relation is of the form P���=P���� �
exp����, where � and �� are equal but opposite values
for the entropy production rate, P��� and P���� give their
probabilities, and � is the length of the interval over which
� is measured. In these systems, the above mentioned FT is
derived for a mathematical quantity �, which has a form
similar to that of the entropy production rate in irreversible
thermodynamics [7].

The proof of FTs is based on a certain number of
hypotheses; experimenting on a real device is useful not
only to check those hypotheses, but also to observe
whether the predicted effects are observable or remain
only a theoretical tool. There are not many experimental
tests of FTs. Some of them are performed in dynamical
systems [8] in which the interpretation of the results is very
difficult. Other experiments are performed on stochastic
systems, one on a Brownian particle in a moving optical
trap [9] and another on electrical circuits driven out of
equilibrium by injecting in it a small current [10]. The last
two systems are described by first order Langevin equa-
tions and the results agree with the predictions of
Refs. [5,6]. Systems described by second order Langevin
equations have been studied [3], but to our knowledge no
predictions on the finite time corrections, as the ones from
[5,6] for the power injected into the system are available.
The test using a harmonic oscillator is particularly impor-
tant because the harmonic oscillator is the basis of many
physical processes. Indeed the general predictions of FTs
are valid only for �! 1 and the corrections for finite �
have been computed only for a first order Langevin
dynamics.

In the present Letter, we address several important ques-
tions. We investigate first the transient fluctuation theorem

(TFT) of the total external work done on the system in the
transient state, i.e., considering a time interval of duration
� which starts immediately after the external force has
been applied to the oscillator. We then analyze the sta-
tionary state fluctuation theorem (SSFT), which concerns
fluctuations in the stationary state, i.e., in intervals of
duration � starting at a time long after the external force
has been applied. We also study a new case of stationary
behavior obtained when the system is driven periodically
in time [11]. In this case, which is actually a very important
one, no theoretical prediction is available. We show that the
finite time corrections for SSFT are already very complex
in both these rather simple situations.

To test the FT we measure the out-of-equilibrium fluc-
tuations of a harmonic oscillator whose damping is mainly
produced by the viscosity of the surrounding fluid, which
acts as a thermal bath of temperature T. We recall here only
the main features of the experimental setup, more details
can be found in Refs. [12,13]. The oscillator is a torsion
pendulum composed of a brass wire and a glass mirror
glued in the middle of this wire. It is enclosed in a cell filled
by a water-glycerol solution at 60% concentration. The
motion of this pendulum can be described by a second
order Langevin equation:

 Ieff
d2�

dt2
� �

d�
dt
� C� � M�

��������������
2�kBT

p
�; (1)

where � is the angular displacement of the pendulum, Ieff is
the total moment of inertia of the displaced masses, � is the
oscillator viscous damping, C is the elastic torsional stiff-
ness of the wire,M is the external torque, kB the Boltzmann
constant, and � the noise, delta correlated in time. In our
system the measured parameters are the stiffness C �
4:5� 10�4 N m rad�1, the resonant frequency fo ��������������
C=Ieff

p
=�2�� � 217 Hz, and the relaxation time �� �

2Ieff=� � 9:5 ms. The external torque M is applied by
means of a tiny electric current J flowing in a coil glued
behind the mirror. The coil is inside a static magnetic field,
hence M / J. The measurement of � is performed by a
differential interferometer, which uses two laser beams
impinging on the pendulum mirror [12,13]. The measure-
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ment noise is 2 orders of magnitude smaller than the
thermal fluctuations of the pendulum. ��t� is acquired
with a resolution of 24 bits at a sampling rate of
8192 Hz, which is about 40 times fo. The calibration
accuracy of the apparatus, tested at M � 0 using the fluc-
tuation dissipation theorem, is better than 3% (see [13]).

To study SSFT and TFT we apply to the oscillator a time
dependent torque M�t� as depicted in Fig. 1(a), and we
consider the work W� done by M�t� over a time �:

 W� �
1

kBT

Z ti��

ti
�M�t� �M�ti��

d�
dt
dt: (2)

The TFT implies that ti � 0 whereas ti 	 3�� for SSFT.
As a second choice for M�t�, the linear ramp with a rising
time �r is replaced by a sinusoidal forcing; this leads to a
new form of stationary state which has never been consid-
ered in the context of FT. We examine first the linear
forcing M�t� � Mot=�r [Fig. 1(a)], with Mo �
10:4 pN:m and �r � 0:1 s � 10:7 ��. The response of
the oscillator to this excitation is comparable to the thermal
noise amplitude, as can be seen in Fig. 1(b) where ��t� is
plotted during the same time interval of Fig. 1(a). Because
of thermal noise the power W� injected into the system
[Eq. (2)] is itself a strongly fluctuating quantity.

We consider first the TFT. The probability density func-
tions (PDFs) P�W�� of W� are plotted in Fig. 2(a) for
different values of �. We see that the PDFs are Gaussian
for all � and the mean value of W� is a few kBT. We also
notice that the probability of having negative values ofW is
rather high for the small �. The function

 S�W�� 
 ln
�
P�W��

P��W��

�
(3)

is plotted in Fig. 2(b). It is a linear function ofW� for any �,
that is S�W�� � ����W�. Within experimental error, we
measure the slope ���� � 1. Thus,for our harmonic oscil-
lator,the TFT is verified for any time �. This was expected
[5,7], and we give a derivation of this generic result for a
second order Langevin dynamics at the end of the Letter.

We now consider the SSFT with ti 	 3�� in Eq. (2). We
find that the PDFs of W�, plotted in Fig. 3(a), are Gaussian
with many negative values of W� for short �. The function
S�W��, plotted in Fig. 3(b), is still a linear function of W�,
but, in contrast to TFT, the slope ���� depends on �. In
Fig. 3(c) the measured values of ���� are plotted as a

function of �. The function ���� ! 1 for �� ��. Thus
SSFT is verified only for large �. The finite time correc-
tions of SSFT, which present oscillations whose frequency
is close to f0, agree quite well with the theoretical predic-
tion computed for a second order Langevin dynamics that
we will discuss at the end of the Letter, see Eq. (10). We
stress that the finite time correction is in this case very
different from that computed in Refs. [5,6] for the first
order Langevin equation.

The results of Figs. 2 and 3, have been checked for
several Mo=�r without noticing any difference. The errors
bars in the figure are within the size of the symbols, and
they come only from the calibration errors of the harmonic
oscillator parameters, and statistics of realizations (typi-
cally 5� 105 cycles have been used).

Finally we want to briefly describe the results of the
periodic forcing. In this case M�t� � Mo sin!dt and the
work expression [Eq. (2)] is replaced by

 Wn � W���n �
1

kBT

Z ti��n

ti
M�t�

d�
dt
dt; (4)

with �n � n2�=!d with n integer. This is a stationary state
that has never been studied before in the context of FT. We
find that for any driving frequency !d the PDFs of Wn are
Gaussian. The function S�Wn�, measured at !d=2� �
64 Hz and plotted in Fig. 4(a), is linear in Wn and the
corresponding slope ��n� is a function of n. The measured
values of ��n� are shown as function of n in Fig. 4(b),
where the results obtained at !d=2� � 256 Hz are plotted
too. We see that the convergence rate is quite different in
the two cases, which agree with our theoretical predictions
for a second order Langevin equation [see Eq. (11)]. Also
in the case of the sinusoidal forcing the agreement between
the computed and measured finite time corrections is very
good. These results prove not only that FTs asymptotically
hold for any kind of forcing, but also that finite time
corrections strongly depend on the specific dynamics. In
the case of the sinusoidal forcing, the convergence is very
slow: in Fig. 4(e), we see that it takes several dozens of
excitation periods (500 ms for !d=2� � 64 Hz) to get
��n� � 1 within 1%. On the contrary, for a ramp forcing
this was achieved after a few �� (20 ms); see Fig. 3(c).

FIG. 1. (a) Typical driving torque applied to the oscillator.
(b) Response of the oscillator to the external torque (gray
line). The dark line represents the mean response ���t� to the
applied torque M�t�.

FIG. 2 (color online). TFT. (a) P�W�� for TFT for various
�=��: 0.31 (�), 1.015 (�), 2.09 (�), and 4.97 (�).
Continuous lines are Gaussian fits. (b) TFT; x�W�� computed
with the PDF of (a). The straight continuous lines are fits with
slope 1, i.e., ���� � 1, 8�.
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Let us now compute the finite time corrections to TFT
and SSFT [plotted in Figs. 3(c) and 4(e)] for the harmonic
oscillator, applying a method very similar to the one al-
ready used in the context of the Jarzynski equality (see

Ref. [13]). We write ��t� � ���t� � ���t�, where ���t� is the
mean response of the system to the external torque and
���t� are the thermal fluctuations. The mean response ���t�
[dark line in Figure 1(b) and 4(b)] is computed by perform-
ing an ensemble average of ��t� over 103 responses to the
M�t� of Fig. 1(a), respectively, Fig. 4(a). It turns out that the
measured ���t� is equal to the solution of Eq. (1) with � � 0
and with M equal to the applied time dependent torque.
Once the mean behavior is known, it is useful to compare
the statistical properties of ���t� measured at M�t� � 0
with the equilibrium ones. In Fig. 5(a) we plot the Gaussian
fit of the PDF of ���t� measured at equilibrium M�t� � 0
(continuous line) and at M�t� � 0 (�). The two curves are
equal within experimental errors. Thus we conclude that
the external driving does not perturb the equilibrium PDF,
which is a Gaussian of variance kBT=C. In Fig. 5(b) we
plot the power spectra of �� in equilibrium (continuous
line) and out equilibrium (dotted line). The two spectra are
equal and they coincide with the theoretical spectrum of an
equilibrium second order Langevin dynamics [Eq. (1) with
M � 0] computed using the oscillator parameters. Thus we
clearly see that, within statistical accuracy, the fluctuations
of �� measured at M�t� � 0 are those of equilibrium. This
important observation is the key point to estimate the finite
time corrections of FTs.

In order to compute ����, we first decompose the total
work of the external torque into the sum of a mean part and
a fluctuating one, i.e., W� � �W� � �W�, where

 

�W � �
1

kBT

Z ti��

ti
�M�t� � aM�ti��

d ��
dt
dt; (5)

 �W� �
1

kBT

Z ti��

ti
�M�t� � aM�ti��

d��
dt

dt; (6)

with a � 1 for the ramp forcing [Eq. (2)] or a � 0 for
sinusoidal driving [Eq. (4)]. From those equations and the
aforementioned experimental observation on the fluctua-
tions ��, we see that the fluctuations �W� have a Gaussian
distribution, so the PDF of the work W� done by the
external torque is fully characterized by its mean �W� and
variance �2 � h��W��

2i, where h:i stands for ensemble

FIG. 4 (color online). Sinusoidal forcing. (a) Sinusoidal driv-
ing torque applied to the oscillator. (b) Response of the oscillator
to this periodic forcing (gray line); the dark line represents the
mean response ���t�. (c) PDF of the work Wn integrated over n
periods of forcing, with n � 7 (�), n � 15 (�), n � 25 (�), and
n � 50 (�). (d) The function S�Wn� measured at !d=2� �
64 Hz is plotted as a function of Wn for several n: (�) n � 7;
(�) n � 15 (�), n � 25; (�) n � 50. Continuous lines are
functions S�Wn� computed from Gaussian fits of PDF (in
Fig. b). (e) The slopes ��n�, plotted as a function of n for two
different driving frequencies !d � 64 Hz (�) and 256 Hz (�);
continuous lines are theoretical predictions from Eq. (11) with
no adjustable parameter.

FIG. 5 (color online). (a) PDF of the fluctuations �� � ��
���t� when the torque is applied (�), compared with a Gaussian
fit of the PDF at equilibrium (continuous line). (b) The measured
spectrum of �� (�) is compared with the prediction of fluctua-
tion dissipation theorem in equilibrium (continuous line).

FIG. 3 (color online). SSFT with a ramp forcing. (a) PDF of
W� for various �=��: 0.019 (�), 0.31 (�), 2.09 (�), and 4.97
(�). (b) Corresponding functions S�W��. (c) The slope ���� of
S�W�� is plotted versus � [�: experimental values; continu-
ous line: theoretical prediction Eq. (10) with no adjustable
parameter].
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average. In such a case the FTs take a simple form:

 S�W�� �
2 �W

�2 W� � ����W�; (7)

where ���� 
 �1� 	�����1 following the notation of
Ref. [6]. From Eq. (7) it is clear that to estimate the finite
time correction ���� we need only to compute �W� and �2.

�W� is simply obtained by inserting in Eq. (5) the ex-
pression of M�t� and the solution �� of Eq. (1) with � � 0.
The variance �2 is computed using Eq. (6). For the linear
ramp of Fig. 1, we obtain

 �2 �
1

�kBT�
2

M2
0

�2
r

�
�2h��2���i �

��Z �

0
���t�dt

�
2
�

� 2�
Z �

0
h��������t�idt

�
; (8)

which can be computed using the correlation function
R��� � h��������0�i. As already explained, the experi-
mental data indicate that the statistical properties of
���t� on the ramp are the same as the properties of the
equilibrium fluctuations, which are well described by a
second order Langevin dynamics. Thus we can use for
R��� the known equilibrium correlation function of the
thermal fluctuations, which for a second order Langevin
dynamics is [13]

 R��� �
kBT
C

sin� j�j � ’�
sin’

exp���j�j�; (9)

where � � 1=��, �2 �  2 � !2
0 � C=Ieff and sin’ �

 =!0. We checked our method on a first order Langevin
equation, for which the exact results of Refs. [5,6] are
available. We find that 	��� for the work computed with
our technique in a first order Langevin dynamics is the
same as in Refs. [5,6] both for TFT and SSFT. Thus we can
now safely apply our technique to a second order Langevin
equation. We find that in the case of the TFT 	 � 08�,
whereas in the case of the SSFT
 

	��� �
2

 �

�
sin3’
!0�

� exp�����

�

�
sin�2’�  �� �

sin�3’�  ��
!0�

�	
: (10)

The same calculations can be performed for any kind of
M�t�. For example, with a sinusoidal forcing M�t� �
Mo sin�!dt�, SSFT for the workWn defined in Eq. (4) gives

 	��n� � �
cos2

2��n

!2
0 �!

2
d

!2
d

�
1

�n
O�e���n�; (11)

where 
 is the phase shift between ���t� and M�t�, i.e,
tan�
� � �2�!d=�!2

0 �!
2
d� and �n � 2n�=!d with n

integer. In Eq. (11), O�e���n� is a term that vanishes

exponentially in ��n, the expression of which is compli-
cated and will be reported in a longer article, together with
many other interesting features.

These analytical results agree remarkably well with the
experimental results for TFT and SSFT for the work fluc-
tuations in a harmonic oscillator [see Figs. 3(c) and 4(e)].

In conclusion, we have applied the FTs to the work
fluctuations of an oscillator driven out of equilibrium by
an external force. The TFT holds for any time whereas the
SSFT presents a complex convergence to the asymptotic
behavior which strongly depends on the form of the driv-
ing. The exact formula of this convergence can be com-
puted using several experimental evidences of the statistics
of the fluctuation. These results are useful for many appli-
cations going from biological systems to nanotechnology,
where the harmonic oscillator is the simplest building
block.
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