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We calculate the quantum correlations existing among the three output fields (pump, signal, and idler)
of a triply resonant nondegenerate optical parametric oscillator operating above threshold. By applying
the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we show that
strong tripartite continuous-variable entanglement is present in this well-known and simple system.
Furthermore, since the entanglement is generated directly from a nonlinear process, the three entangled
fields can have very different frequencies, opening the way for multicolored quantum information
networks.
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Entanglement, which is probably the strangest of all
quantum phenomena, is considered the most important
resource for future quantum information technology.
Recent experiments on quantum computing, storage, and
communication of information utilize different ‘‘quantum
hardware,’’ such as atom clouds [1], quantum dots [2], and
trapped ions [3], all with different resonance frequencies.
These systems will probably be used in nodes of quantum
networks, implying the necessity of devising ways to ad-
dress them without loss of quantum information. For net-
works with several nodes, multipartite entangled light
beams will be important to carry out such tasks.

Most of the current realizations of entangled light beams
are implemented by combining squeezed beams on beam
splitters [4–9]. The beam splitter transformation is linear
and does not lead to entangled beams of different frequen-
cies. In order to produce multicolored entangled beams it is
important to generate them directly from a nonlinear pro-
cess. In the case of bipartite two-color entanglement, this
has been done very recently, in the above-threshold optical
parametric oscillator (OPO) [10–12].

The OPO is the best known and most widely used source
of entangled continuous variables for quantum informa-
tion purposes [13]. Nevertheless, focus thus far has been
on the down-converted beams it produces, usually over-
looking quantum properties of the pump beam. Recent
proposals for direct generation of tripartite entanglement
use so-called cascaded nonlinearities, combining down-
conversion and sum or subtraction frequency generation
[14], which are not present in standard OPOs. In this
Letter, we theoretically demonstrate that the standard triply
resonant above-threshold OPO naturally produces pump-
signal-idler tripartite entanglement. We show that the
down-converted and the pump fields’ noises violate in-
equalities which are sufficient for witnessing entanglement
[13]. We believe this to be the simplest and most practical
proposal of a multicolored multipartite entanglement
source to date.

For tripartite systems with subsystems (k, m, n), if the
state is partially separable, the density operator can be
written in the form of a statistical mixture of reduced
density operators �̂i;km and �̂i;n:

 �̂ �
X

i

�i�̂i;km � �̂i;n; (1)

with weights �i � 0 satisfying
P
i�i � 1. A necessary

condition for separability of two subsystems was demon-
strated by Duan et al. [15], in the form of an inequality: if it
is violated, there is bipartite entanglement. This criterion is
easily checked experimentally by measuring second order
moments of combinations of operators acting on each of
the subsystems.

The inequality presented in Ref. [15] for the variances of
two combinations of positions and momenta (x̂j, p̂j) of
subsystems j � f1; 2g can be readily extended to a combi-
nation of three subsystems [16]. If we define two commut-
ing operators û � h1x̂1 � h2x̂2 � h3x̂3 and v̂ � g1p̂1�
g2p̂2 � g3p̂3, where the hi and gi are arbitrary real pa-
rameters, for a (partially) separable state written in the
form of Eq. (1), inequalities of the form:

 h�2ûi � h�2v̂i � 2�jhngnj � jhkgk � hmgmj�; (2)

with different permutations of the subsystems (k, m, n),
must hold. Therefore, violations of the inequalities corre-
sponding to the three possible permutations suffice to
demonstrate tripartite entanglement.

For electromagnetic fields, position and momentum op-
erators can be replaced by the field amplitude and phase
quadrature operators, defined as functions of the creation
and annihilation operators as p̂j�t� � �ei’j â

y
j �t� �

e�i’j âj�t�	 and q̂j�t� � i�ei’j âyj �t� � e
�i’j âj�t�	, where

the phase ’j of each mode is chosen from its mean value
in order to have hq̂ji � 0. In this case, p̂ represents the
amplitude fluctuations of the field, and q̂ is related to the
phase fluctuations. From the commutation relation
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�âj; â
y
j0 	 � �jj0 , it follows that �p̂j; q̂j0 	 � 2i�jj0 . In the

present situation, we look for violations of the following
inequalities:

 S1 � h�
2�p̂1 � p̂2�i � h�

2�q̂1 � q̂2 � �0q̂0�i � 4; (3)

 S2 � h�
2�p̂0 � p̂1�i � h�

2�q̂1 � �2q̂2 � q̂0�i � 4; (4)

 S3 � h�
2�p̂0 � p̂2�i � h�

2��1q̂1 � q̂2 � q̂0�i � 4; (5)

with an optimized choice of the free parameters �i, in
order to show that all three modes are entangled, i.e., that
the state of the full system is not even partially separable.

The tripartite entangled fields are directly produced by a
triply resonant nondegenerate OPO, composed of a ��2�

nonlinear crystal placed inside an optical cavity (a full
description of field mean values and tuning characteristics
can be found in Ref. [17]). The OPO is a well-known
source of nonclassical states of the electromagnetic field,
both above and below the oscillation threshold. In this
system, a pump photon of frequency!0 is down-converted
into a pair of signal and idler twin photons of frequencies
!1 and !2. These fields exit the cavity and can be easily
separated by color (pump) and polarization (signal and
idler) in the case of type-II phase matching. Below thresh-
old, signal and idler modes are in an entangled state with
zero mean values for the electric field [18]. Above thresh-
old, the parametric coupling leads to both intensity cou-
pling between the three modes (this is the well-known
pump depletion effect: a pump photon is destroyed each
time a couple of twin and idler photons is created) and to
phase coherence between them: the sum of the signal and
idler field phases is locked to the pump phase as a con-
sequence of energy conservation (!1 �!2 � !0). This
leads to both intensity and phase correlations between the
three modes that extend to the quantum regime, and even-
tually culminate in tripartite entanglement as we show
below. So far, physicists’ interest has been concentrated
on the signal and idler quantum correlations [19] or on the
pump squeezing [20]. The full three-mode system has
indeed genuine quantum properties [21], which are partly
lost when one traces out the pump mode, although the
signal and idler modes remain of course entangled [10].

Quantum fluctuations of the system are calculated as
usual [22]: we start from the evolution equations of the op-
erators of the three modes (â0, â1, â2) inside the OPO cav-
ity. We write the field operators as the sum of their mean
values and a fluctuation term and, assuming that the fluc-
tuations are small compared to the mean fields, which is
true everywhere except very close to threshold, we linea-
rize these equations around the classical mean values [17].
One obtains in this way six linear Langevin equations that
enable us to calculate the evolution of the real and imagi-
nary parts of the intracavity fluctuations of the three fields.
If we assume that the cavity transmission factor and the
extra-losses are the same for the signal and idler modes, the

evolution equations can be decoupled into two independent
sets [22]: two equations for the signal and idler dif-
ference, and four equations coupling the sum of the signal
and idler fluctuations to the pump fluctuations. Using the
input-output relation on the coupling mirror, one obtains
the output field fluctuations in Fourier domain, � ~p��� �
��p̂0���; �q̂0���; �p̂1���; �q̂1���; �p̂2���; �q̂2���	

T , as
a function of the input field fluctuations. This enables us
to determine the full 6
 6 three-mode covariance matrix,
C � h� ~p���� ~p����Ti, of the pump, signal and idler out-
put modes, and the variance of any combination of these
modes. The full treatment is described in Ref. [23].

From the calculated covariances, we derive the opti-
mized values of the parameters �i which minimize the
quantities S1, S2 and S3 of Eqs. (3)–(5) as functions of the
covariance matrix elements for the output field, and calcu-
late the corresponding minimum value for these three
quantities. We take typical experimental conditions: cavity
coupling mirror transmittance for pump T0 � 10% and
signal and idler beams T � 2%, and exact cavity resonance
for the three modes. We can now study the dependence of
S1, S2, and S3 with the normalized pump power � (power
normalized to the oscillation threshold on resonance) and
with the analysis frequency! (normalized to the inverse of
the cavity round trip time �).

In Fig. 1, we display the minimized value of S1. As can
be seen, Smin

1 is smaller than 4 in all the presented range of
parameters, which establishes the inseparability of the
signal and idler modes. Let us stress that the resulting
violation, with the optimization of the variance, is much
stronger than that observed by tracing out the pump mode
and looking only at signal and idler modes under the Duan
et al. criterion [23]. In the present case, the measurement of
pump phase increases the knowledge that one can obtain
about the idler beam phase from the measurement of the
signal phase. Nevertheless, the state can still be partially
separable if the other two inequalities [Eqs. (4) and (5)] are
not violated. The interchangeability of the roles of signal
and idler makes evident that S2 � S3. The common mini-

FIG. 1 (color online). Optimized sum of variances, Smin
1 , for

Eq. (3): � � pump power relative to threshold, ! � analysis
frequency, in units of 1=�.
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mized value of this quantity is shown in Fig. 2. We observe
that it is also below 4, implying inseparability for a broad
range of values of analysis frequency and pump power,
even though the violation is not as strong as for Smin

1
(Fig. 1). Correlations between the twin beams tend to be
stronger than those between one of the twins and the pump,
since the pump is not generated inside the cavity. Smin

2 �
Smin

3 is everywhere larger than ’ 1:7, a value obtained for
� ’ 1:6. For this value of �, all three fields have approxi-
mately the same intensities, which is in general the best
situation for observing correlations.

Another method to characterize the amount of entangle-
ment in a system is to study the eigenvalues of its covari-
ance matrix: they provide information about the maximum
squeezing that can be obtained from the different modes by
unitary transformations and about the maximum bipartite
entanglement that can be extracted from these modes [24].
In our case, the minimum eigenvalue is given by the
variance of p̂1 � p̂2. The next lower eigenvalue is related
to the combination of phases in the form (q̂1 � q̂2 � �q̂0),
where � is a real number. Both values can be strongly
squeezed, at the expense of excess noise for the variances
of their conjugate variables.

From these two smallest eigenvalues 	1, 	2 we calculate
the logarithmic negativity EN � max�0;�log2�	1	2�=2	
[25,26]. This is a computable measure of the degree of
bipartite entanglement of a system, and it is especially
useful owing to its immediate extension to entangled
mixed states. We calculate here the difference, Ediff

N , be-
tween the logarithmic negativities for the full system and
for just the signal and idler modes, tracing out the pump.
This difference is positive for the full range of parameters
displayed in Fig. 3, with maximum values obtained for low
analysis frequencies (!< 0:02=�). It is clear that quantum
information is present in all three modes and one only
recovers a fraction of it when restricting measurements to
signal and idler beams.

The tripartite pump-signal-idler entanglement in the
OPO can be observed in a broad range of frequencies

and pump power. The correlation is, as expected, stronger
for analysis frequencies below the cavity bandwidth T=�
for the signal and idler modes, and for pump powers close
to threshold, although it does not depend so much on this
last parameter. Calculations from the covariance matrix
show that there is a small dependence of S1 and S2 on
the cavity detunings, which is important because the lock-
ing of the OPO is typically done with some small detuning
for pump and down-converted modes. If we consider the
presence of spurious losses inside the cavity, there is a
linear increase of the value of S1 with these losses, much in
the way observed for the intensity correlation of twin
beams emitted from the OPO. As for S2, inseparability
no longer occurs for lower analysis frequencies, but still
holds for a wide range of the parameters � and !.

In conclusion, we have demonstrated that the standard
nondegenerate optical parametric oscillator directly yields
tripartite entangled light beams when operating above
threshold. Above-threshold OPOs have produced the high-
est level of intensity quantum correlations to date [27].
Figure 1 shows that they can also produce a very low bound
for the combined phases quantum fluctuations. Thus, the
magnitudes of expected quantum correlations are among
the best achievable at present. The experimental realiza-
tion of this system is much simpler than the proposals
based on combined nonlinearities [28], especially consid-
ering the high degree of experimental control achieved
over the OPO. We also note that the above-threshold
OPO entanglement renders it a possible device for such
tasks as a tripartite teleportation network [8]. Moreover,
it allows distribution of quantum information through three
modes of very different frequencies, a topic that is attract-
ing growing attention [10,29,30]. This is of practical in-
terest, since high efficiency photodetectors are only avail-
able in limited ranges of the electromagnetic spectrum.
Frequency-tunable quantum information will also be very
useful for light-matter interfaces in quantum networks.

FIG. 2 (color online). Optimized sum of variances, Smin
2 �

Smin
3 , for Eqs. (4) and (5): � � pump power relative to threshold,
! � analysis frequency, in units of 1=�.

FIG. 3 (color online). Difference between logarithmic nega-
tivities, Ediff

N , for the full three modes and for only signal and
idler modes. � � pump power relative to threshold, ! �
analysis frequency, in units of 1=�.
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associated with the CNRS (UMR 8552). This work was
supported by the program CAPES-COFECUB and the
Brazilian agencies FAPESP and CNPq (Instituto do
Milênio de Informação Quântica).
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