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We show how realistic cavity-assisted interaction between neutral atoms and coherent optical pulses,
and measurement techniques, combined with optical transportation of atoms, allow for a universal set of
quantum gates acting on decoherence-free subspace in a deterministic way. The logical qubits are
immunized to the dominant source of decoherece—dephasing, while the influences of additional errors
are shown by numerical simulations. We analyze the performance and stability of all required operations
and emphasize that all techniques are feasible with current experimental technology.
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Introduction.—Manipulation of atoms in microscopic
traps is one of the major highlights of the extraordinary
progress experienced by atomic, molecular, and optical
(AMO) physics over the past few years, and has led to
important successes in the implementation of quantum
information processing [1]. Hence, several implementa-
tions of neutral atoms quantum computing, exploiting
various trapping methods and entangling interactions,
have been proposed [2–6]. Nevertheless, the experimental
requirements with these approaches turn out to be very
challenging, such as a large number of atoms, each of
which is strongly coupled with cavity mode, individually
addressing, and localization to the Lamb-Dicke limit.

A quantum memory stores information in superposition
states, but interactions between the quantum memory and
its environments destroy the stored information, so-called
decoherence. Decoherence-free subspaces (DFSs) have
been proposed [7] to protect fragile quantum information
against the detrimental effects of decoherence. There have
been a lot of theoretical researches for achieving fault
tolerant universal quantum computation in DFSs [8].
Also significant experimental efforts have been made for
realization of such a decoherent-free quantum memory in
different physical systems [9–11].

In this Letter, we present a scheme to realize a universal
set of quantum gates in a deterministic way, acting on
neutral atoms through cavity-assisted interaction of coher-
ent optical pulses in DFS, which from the beginning im-
munizes our logical qubits against the dominant source of
decoherence—collective dephasing. Our idea is at least
twofold. First, we implement computation using specific
physical mechanisms that allow for gates in the encoded
space without any overhead associated with encoded gates.
Second, in our construction the system never leaves the
DFS during the entire execution of gates, so that fault
tolerance is natural and, in stark contrast to the usual
situation in quantum error correction, necessitates no extra
resources during the computation.

Neutral atoms in our scheme are stored in transverse
optical lattices and translated into and outside of the cavity

[12] for gate operations to obviate the requirement for
individual addressing, each of which has three relevant
levels as shown in Fig. 1. Atomic states j0i and j1i are
two stable ground states. The atomic transition from j0i to
excited level jei is resonantly coupled to a cavity mode ac.
The state j1i is decoupled due to a large hyperfine splitting.
The coherent time of the superposition of the internal
atomic states �co is with a magnitude of milliseconds
[13]. There are two dominant sources of decoherence:
(i) photon loss during gate operations and (ii) dephasing
during the storage and transmission of the atoms in the
optical lattices. We will later show that in realistic setting
gate errors due to photon loss are characterized by the
detailed numerical simulation which demonstrates the
practicality of this scheme within the reach of the current
experimental technology. Furthermore, unlike single-
photon detection , since a homodyne detection of the
coherent state directly measures the relative phase of the
signal state, the photon losses only decrease the signal-to-
noise ratio but do not lead to a failure in the measurements.
Also, we describe a specific encoding that allows suppres-
sion of the error of type (ii) by considering a DFS by the
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FIG. 1 (color online). (a) Schematic setup for implementation
of the logical CZ gate on two logical atomic qubits in DFS
through the cavity-assisted interaction. In order to verify the
projection, the scattering coherent optical pulses leaking out are
detected by the homodyne detectors after reflection. Here j�i is
the state of local oscillator. (b) The relevant level structure of the
atom and the coupling configuration.
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states j0Li � j01i and j1Li � j10i, which from the begin-
ning immunizes our logical qubits against the dominant
source of decoherence—dephasing provided by stray
fields, random variation of the atom-cavity coupling rate,
and the instability of the optical lattice. We denote the
logical Bell states by j��L i � �j0L0Li � j1L1Li�=

���
2
p
�

�j0101i � j1010i�=
���
2
p

and j��L i � �j0L1Li �
j1L0Li�=

���
2
p
� �j0110i � j1001i�=

���
2
p

, which take the full
advantage of these properties, suppressing phase noise.
The logical qubit decoheres only insofar as the dephasing
fails to be collective.

Dynamical decoupling pulses and their application.—
We briefly review the decoupling technique [14] as it
pertains to our problem. Assume a phase noise term "�t�
acts on the internal states of atoms, characterized by a
power spectrum S�!� of integrated power ��co�

2 with a
high frequency cutoff at !c � 1=�co. The action of "�t�
can be represented by a stochastic evolution operator

Ux�t� � e�i
R
t

0
"�t0�dt0�Lx , where �Lx is a Pauli operator for

the encoded subspace, which can be implemented simply
by swapping the two qubits. The pulse sequence [�t, Ux,
�t, Ux] gives a reduced power spectrum SDFS�!� /
S�!�sin4��t!=2�=��t!�2, where �t is free evolution
time (cycle time). For frequencies below 1=�t, the bath-
induced error rate is reduced by a factor proportional to
��t!�2.

The DFS also reduces phase errors during transport
of atoms with a separation time �T . Replacing "�t�
with "�x; t�, we set h"�x; t�"�x0; t0�i � N�jx� x0j� �R
1
�1 S�!�e

i!�t�t0�d! for transport into or outside of the
cavity, where N�x� � e�x

2=d2
, d � n�=2 is the distance

between two atoms with n integer and � is the wavelength
of the counterpropagating laser used to form a 1D optical
lattice. The resulting spectral function is S�T �!� �R
1
�1 S�!� ��sin2��!� ���T=2	 e

���T=4�2�2=2����������������
2��4=�T �2
p d�, which has

a suppression of noise with frequencies � 1=�T by
��T!�2=8.

Basic tools.—For the logical gate operations, we should
introduce some basic tools—physical controlled-Z (CZ)
gate operation and projective measurements. To perform a
collective CZ gate on two atoms [5], we reflect a weak co-
herent light pulse with the so-called odd coherent state
from the cavity, which is resonant with the bare cavity
mode and is given in this form as j��i�N��j�i�j��i�,
where N� is a normalization constant and j�i is a coherent
state. Recently, this novel state of light has been generated
and characterized by a nonpositive Wigner function ex-
perimentally [15]. For the case that both atoms are in the
state j1i, the coherent light performed in the limit with
T 
 1=� (here T is the pulse duration and � is the cavity
decay rate) is resonantly reflected by the bare cavity mode
with a flipped global phase. For the three other cases, the
effective frequency of the dressed cavity mode will be
shifted due to the atom-cavity coupling, which is described

by the Hamiltonian H � @
P
i�1;2gi�jeiih0ja� j0iiheja

y�.
If the coupling rates satisfy gi 
 �1=T; �; 	�, where 	 is
the rate of spontaneous decay of the excited state, then the
frequency shift will have a magnitude comparable with gi,
so that the incident single-photon pulse will be reflected by
an off-resonant cavity. Hence, both the shape and global
phase will remain unchanged for the reflected pulse. The
net effect of these two subprocesses is that the reflection of
a single-photon pulse from the cavity actually performs a
CZ operation UCZ � exp�i�j11ih11j� on the two atoms
while leaving the photon state unchanged.

If the input optical pulse is prepared in a weak coherent
state j�i, which is reflected following the above analysis
from atom-cavity system, then the projection is obtained
after the homodyne detection of the states of the coherent
light as the form

 P1 � j11ih11j; P2 � I � P1: (1)

Now we show that by making a little change to the
realistic setting one obtains another projection. First, the
weak coherent optical pulse enters the cavity with only
atom 1 inside. After the interaction between atom and
cavity mode, an operation exp�i�j1; �ih1; �j� is applied
on atom and the optical pulse. Atom 2 now is moved into
the cavity while 1 outside, and the pulse is reflected suc-
cessively to enter the cavity again, so that the same opera-
tion is applied on atom 2 and the pulse. After detection, we
obtain

 P3 � j00ih00j � j11ih11j; P4 � I � P3: (2)

Logical single-qubit operations.—The (physical) single-
qubit rotation Rz��� � exp��i��z�, which can be im-
plemented by rf pulses or the Raman transition applied
on atom 1, has already provided arbitrary logical z rota-
tion, Uz���, i.e., Uz���j0Li � e�i�j0Li and Uz���j1Li �
ei�j1Li.

Then we show another important logical single-qubit
gate—Hadamard gate. Consider a system A including
atoms 1 and 2, on which we want to apply a Hadamard
operation and obtain the outcome state on an ancilla
system B including atoms 3 and 4 prepared in the state
j�Li initially, where j�Li � �j0Li � j1Li�=

���
2
p

. We per-
form a physical CZ gate on atoms 1 and 3, and measure
system A in logical x basis fj�Li; j�Lig. If the outcome
j�Li is obtained, we apply�x � �x on systemB, or else we
do nothing. Then HL � �j0Lih0Lj � j0Lih1Lj � j1Lih0Lj �
j1Lih1Lj�=

���
2
p

is obtained.
Hence, an arbitrary logical single-qubit rotation can be

implemented with a sequence of Hadamard operations and
z rotations U � Uz���HLUz���HLUz�&�.

Logical single-qubit measurements.—We can realize
logical single-qubit Z measurement of the observable �Lz
by the sequence of operations: first, one applies �x � I and
then the measurement fP1; P2g, followed by �x � �x,
fP1; P2g again, finally, I � �x. The measurement outcome
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(�1, �2) with �i being the outcome associated with Pi,
corresponds—in the logical subspace—to PLz;� � j0Li�
h0Lj; while one obtains PLz;� � j1Lih1Lj for the outcome
(�2, �1). Measurements of arbitrary single-qubit observ-
ables can be realized by applying the corresponding basis
change.

Logical Bell-state measurement (BSM).—Performing
the measurement fP3; P4g on atoms 1 and 3 belonging to
two logical qubits, respectively, allows one to distinguish
the subspace spanned by fj��L i; j�

�
L ig and fj��L i; j�

�
L ig.

The measurement outcomes �3 and �4 correspond to
Pfj��L i;j��L ig � j�

�
L ih�

�
L j � j�

�
L ih�

�
L j and Pfj��L i;j��L ig �

j��L ih�
�
L j � j�

�
L ih�

�
L j, respectively. More generally,

one can obtain nondestructive projections onto subspaces
spanned by two arbitrary Bell states using additional logi-
cal single-qubit unitary operations which allow one to
permute Bell states. For instance, the application HL �
HL consequently before and after the measurement
Pfj��L i;j��L ig corresponds to Pfj��L i;j��L ig. Obviously, using
these nondestructive projections, we can achieve a full
logical BSM.

Two-qubit gate.—A logical CZ gate described byUL
CZ �

diag �1; 1; 1;�1� in the logical basis can be realized shown
in Fig. 1(a) via atoms in a cavity by performing a physical
CZ operation on atoms 1 and 3 belonging to two logical
qubits, respectively.

Now we analyze the fidelity of the logical CZ gate
under the influence of some practical sources of
noise. For the initial state of the system
j�ini�

P
m;n�0;1
mnjmLijnLij’iin, j’ini /

fexp��
R
T
0 fin�t�a

y
in�t�dt	 � exp���

R
T
0 fin�t�a

y
in�t�dt	gjvaci

is the state of the input coherent optical pulse with a
normalized shape function fin�t�, where jvaci denotes the
vacuum state and ayin�t� is the one-dimensional optical field
operator with the commutation relation �ain�t�; a

y
in�t
0�	 �

��t� t0�. The cavity mode ac is driven by the input field
ain�t� through the Langevin equation _ac � �i�ac;H	 �
��=2�ac �

����
�
p
ain�t�. The output field aout�t� of the cav-

ity is connected with the input through the input-
output relation aout�t� � ain�t� �

����
�
p
ac. The output state

of the whole system can be written as j�outi �P
m;n�0;1e

i�mn
0mnjmLijnLij’outimn, where the output state
of the coherent light j’outimn corresponds to the atomic
component jmLijnLi with a shape fout

mn�t� and amplitude
�0mn. In general, the amplitude �0mn (for m, n � 1) is
different from � because of the effect of the atomic spon-
taneous emission loss—the fundamental source of photon
loss in cavity can be quantified by the photon loss parame-
ter  � 1� j�0j2=j�j2 / �	=g2

o through the numerical
simulations. Ideally, the output state j�id

outi would have
the unchanged amplitude � and shape functions fout

11 �t� �
�fin�t� and fout

mn�t� � fin�t� (for m, n � 1). Then the fidel-
ity can be defined as F  jh�id

outjj�outij
2, which decreases

with the mean photon number hni � j�j2.

We investigate the fidelity under typical experimental
configurations and it is shown in Fig. 2(a) as a function of
the mean photon number of the input state for the realistic
parameters �go; �; 	�=2� � �27; 2:4; 2:6� MHz [12]. We
obtain a high fidelity up to 0.99 for these parameters and
the coherent input pulse with a remarkable amplitude � �
1:26. Furthermore, F is insensitive to the variation of the
coupling rate caused by fluctuations in atomic position, and
�F describing change of the fidelity is about 10�2 for g
varying to g=2.

The above scheme can also be extended to perform
logical controlled-NOT (CNOT) gate—in principle, between
two logical qubits represented by remote atoms trapped in
different cavities at arbitrary distance since the (physical)
CZ gate can be implemented between two atoms belonging
to different logical qubits in separated cavities [5,6].

The entangled state j��L iAB is used to generate the
logical four-qubit state that corresponds to the CNOT

gate. We use notation A, A0, B, B0 to refer to different
atoms, where A and A0 referring to atoms trapped in
cavity 1 belong to one party, while B referring to atoms
trapped in cavity 1 and B0 in cavity 2, belong to another
separated party. We prepare two ancilla logical qubits A0

and B0 in the states j�LiA0 and j0LiB0 ; i.e., the initial
state is j�i � j�LiA0 j�

�
L iABj0LiB0 . The following sequence

of operations with indicated measurement outcomes
generates the desired state: PAA

0

fj��L i;j�
�
L ig
PBB

0

fj��L i;j�
�
L ig
j�i�

�j0L0LiAA0 j�
�
L iBB0 �j1L1LiAA0 j�

�
L iBB0 �=

���
2
p
j�i.

Given two additional logical qubits in an arbitrary state
�A00B00 , where A00 and B00 refer atoms trapped in cavity 2 and
1, respectively, one can use the state j�i together with
logical BSM, to implement a logical CNOT operation on
�A00B00 and obtain the outcome state on system A0B0 follow-
ing the procedure shown in [16]. This is achieved by
measuring systems A00A and B00B in the logical Bell basis
j i1;i2i � I � �Li1;i2 j�

�
L i, where �Li1;i2 is one of Pauli opera-

tors. If the outcome for A00A is j i1;i2i, we apply �Li1;i2 on A0

and proceed analogously with B00B. One can readily see
that the resulting operation on A0B0 after the procedure will
be UCNOT or U�CNOT with the same probability. Since

〈 〉

FIG. 2 (color online). (a) The fidelity of the logical CZ gate vs
the mean photon number of the coherent optical pulse with the
pulse duration T � 200=�, and (b) it changes with g=go. We
have assumed a Gaussian shape for the input pulse with f�t� /
exp���t� T=2�2=�T=5�2	. Here we choose the realistic parame-
ters �go; �; 	�=2� � �27; 2:4; 2:6� MHz.
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UCNOT � U�CNOT, we obtain a deterministic implementation
of logical CNOT gate, and then atoms A0, B0 are in the state
UCNOT�A00B00U�CNOT.

Leakage error detection.—A method is presented to
detect leakage errors, in which the state within the logical
subspace fj0Li; j1Lig is not altered. Consider a system A in
some pure state j’i � j�i � j�?i, where j�i is a state
belonging to the logical subspace spanned by fj0Li; j1Lig,
while j�?i belongs to the orthogonal subspace fj2Li �
j00i; j3Li � j11ig and corresponds to leakage error. An
ancilla system B is prepared in j�Li, and then the mea-
surement fP3; P4g is performed on atoms 2 and 4 and then
on 1 and 4. If the same outcomes in two measurements are
obtained, i.e., (�3, �3) and (�4, �4), that means the initial
system was outside of the logical subspace. In these cases
we conclude that a leakage error occurred. For the different
outcomes (�3, �4) or (�4, �3), we perform a logical CNOT

operation on systems A and B, then the state of system A is
given by j�i. Hence, this procedure always provides a
conclusive leakage error detection.

Feasibility of the proposal.—No particularly demanding
assumptions have been made for experimental parameters.
The relevant cavity QED parameters for our system are
assumed as g2

o=�	 � 51
 1, placing our system well
into the strongly coupled regime. The cavity consists of
two 1-mm-diam mirrors with 10 cm radii of curvature sep-
arated by 75 �m [12] assuming the wavelength of the cav-
ity mode is�780 nm (the rubidium D2 line). The distance
between two atoms d in an optical lattice has a magnitude
of 10 �m, which is larger than the waist �5 �m to leave
only one atom inside the cavity and its neighbor atoms
outside for the logical gate operations. The evolution of the
states of two atoms is accomplished in the duration of the
single-photon pulse T � 200=� � 13 �s. The maximum
velocity of the atoms in the transverse optical lattices is
30 cm=s and the maximum acceleration imparted is 1.5 g.
Moving the proper atoms into and outside of the cavity is
accomplished in the time �T of 100 �s. The gate prefor-
mation and transport of atoms can be accomplished within
the coherent time (dephasing) of atoms with a magnitude
of milliseconds [13,17]. Hence, our scheme fits well the
status of current experimental technology.

Summary.—We have proposed a scheme for determinis-
tic quantum gates acting on neutral atoms in DFS which
from the beginning immunizes our logical qubits against
the dominant source of decoherence—dephasing. The ef-
ficiency of this scheme is characterized through exact
numerical simulations that incorporate various sources of
experiment noise and these results demonstrate the practi-
cality by way of current experimental technology. Some

processes proposed here such as full BSM and unitary
operations based on teleportation may also find applica-
tions in quantum communication and metrology.
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