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We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of
bipartite open quantum systems contains elements not previously encountered in quantum noise physics.
While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate
that it breaks down for bipartite coherence of even the simplest composite systems.
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In this Letter, we will establish results that contradict the
long-standing belief that additivity of coherence decay
rates is a natural consequence of weak noises. This belief
means that the relaxation rate of any system exposed to a
collection of weak noises is the sum of the relaxation rates
associated with the noises separately. Although implied in
many textbook discussions, an actual proof of additivity
may be difficult to locate. We supply here a proof of
additivity for a single qubit coupled to two independent
weak noises (here amplitude noise and phase noise), but
our main message is the demonstration of violations of
additivity in the case of entanglement decay when two or
more qubits are involved. That is, we will show that a
quantum system with the most elementary composite
structure (e.g., simply made of two distinct parts) need
not and generally does not exhibit relaxation-rate additivity
even though the separate parts do. This result is purely
quantum mechanical and extends our understanding of the
power of quantum coherence in an unexpected direction.

We now present an additivity proof that is quantum
mechanical in order to eliminate from concern the possi-
bility that quantum systems are intrinsically different from
classical ones in their response to weak noise. We will
consider ideal noise sources where “ideal” means that the
noise is sufficiently weak and random that the noise-system
interaction is both reliably linear and without significant
backaction on the noise source. Each noise source can then
be treated as a reservoir made of an infinite collection of
random and very broadband harmonic oscillators at zero
temperature.

Of course, the relaxing system need not be linear, so we
choose the simplest nonlinear system, a qubit (two-level
atom, spin one-half, etc.), for our example. The total
Hamiltonian for a qubit coupled to two noise sources
(two “‘environments’’) can be written as follows:

Htot = Hsys + Hinl + Henv’ (1)
where (with 2 = 1)

Hgy = lwgo, and He, = Za)AaIaA + Zv#b:&b#
A "

0031-9007/06/97(14)/140403(4)

140403-1

PACS numbers: 03.65.Yz, 03.65.Ud, 42.50.Lc

are the Hamiltonians of the qubit system and two local
environments. As an example of the types of relaxation that
will be relevant, we suppose that the two environments
couple in the one case longitudinally and in the other case
transversely to the qubit. Thus, we have for the interaction
of the qubit with its two different noise sources:

Hip = klZ(fja'—aI + faoay)
A
+ ko> o (gubl + guby). (2)
y22

We naturally assume that the two noise sources are not
cross correlated, and in the ideal case under consideration
they can be treated in the familiar Born-Markov limit.
Thus, we write the longitudinal and transverse self-
correlation functions in the form «,(z, s) = I',8(¢t — s)
and a,(t,s) = I',6(r — ), respectively. The calculation
of the time dependence of qubit coherence follows the
usual rules [1,2], and we find, for longitudinal noise alone
(ky =1, ky = 0),

pia(t) = e te” 1/ 1, (0),
while for transverse noise alone (k; = 0, k, = 1), we have
pia(t) = e e Tl p 5 (0).

Now we switch on both longitudinal and transverse
noise at the same time (k; = k, = 1). The master equation
for the qubit system after tracing over two noise variables
is simply given by (in the interaction picture)

d

Iy
EP =7(20'—,00'+ —0.0_p—=poo-)

I
+ 5 (opo. = p). 3)

The explicit solution of the above equation gives, for the
qubit coherence,

pia(t) = e i@ote” (/AN HI 5 1 (0), 4)
This is all that is needed for a proof that the total internal

decoherence rate of a qubit under ideal longitudinal and
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transverse noises applied at the same time is given by the
sum of the separate rates: %Fl + I',. Finally, note that the
linearity of the ideal noise interactions makes it obvious
that any number of sources of longitudinal noise (any
number of distinct f&”)a()\")our terms) will additively con-
tribute to a total I';, and, similarly, all gﬁf’)bﬁﬁ) o, transverse
noise sources will contribute to I';.

To the present time, treatments of open quantum system
theory [3—5] are based on this scenario in which a “small”
system has a weak interaction with one or more reservoirs,
and this is the cause of its relaxation (its loss of self-
coherence). Now we extend the discussion very slightly
and consider in detail the simplest quantum system made
of two parts, a pair of qubits. Remarkably, this simple step
takes us onto new ground within the theory of quantum
open systems. We will show that the internal coherence of
the two-qubit system exhibits a nonadditive response. We
believe that this is the first demonstration of the effect.

In order to ensure focus on the main point, in the
following we will not permit the two qubits to interact or
communicate with each other and will allow them to be
influenced only by noise sources that also have no contact
with each other. The only connection between the parts of
the two-qubit system will be pure information. Thus, the
Hamitonian for the two-qubit case is simply the addition of
the Hamiltonians (1) for the two qubits, respectively. Two-
party aspects of quantum information such as mixed states
and entanglement are not present in any single system or in
any pair of classical systems and can lead to new open-
system effects. Although more general results can be ob-
tained using our methods, we will concentrate on mutual
entanglement as the most useful measure of bipartite co-
herence for our demonstration. To determine entanglement
quantitatively, we will use concurrence [6].

Solutions of the appropriate (Born-Markov) equations
for noisy evolution of two-qubit density matrices can be
obtained via several routes [7], and we find the Kraus
operator form [8] most convenient. Given a state p (pure
or mixed), its evolution can be written compactly as

p() = > K, (0)pO)K] (1), &)

where the so-called Kraus
Z#K):KM =1 for all #.

In order to demonstrate the breakdown of additivity for
ideally weak noises, it suffices to find a two-party state that
experiences continuous exponential decay under each
noise but fails to do so when two or more noises are active
at the same time. Actually, we can identify an entire class
of such states. What is more, the class is widely known to
be relevant in a variety of physical situations including
pure Bell states [9] and the Werner mixed state [10] as
special cases.

This class of bipartite states is represented by the follow-
ing two-qubit density matrix, where we use conventional

operators K, satisfy

o

ordering of rows and columns related to eigenstates of o
and o? in the sequence [++, +—, —+, ——1:

a 0 0 O
0 b z O
AB _
P 0 z¢% ¢ 0YF ©)
0 0 0 d

Obviously, a + b + ¢ + d = 1. We easily find the concur-
rence of this state to be given by

CAB = 2 max{0, |z] — ad). (7

For even greater simplicity, within this set of density
matrices we will first focus on a smaller subcategory with a
single positive parameter A:

1 000
1o 4 A 0

AB _ 1

P =510 A 4 0 ®)
0000

Initially, for p4% we have C,(0) = 2/9.

To begin our time-dependent calculations, we consider
pure transverse (phase) noise, for which we have the
following compact Kraus operators for independently
evolving qubits A and B:

a-(p De(x ) o
-3 D0 )
se(b O)e(n ) w
R I LY

where the time-dependent Kraus matrix elements are

ya(t) = exp[—T%1/2] and  wa(r) = /1 = ¥;(1),

and similar expressions for y(z) and w(r). We take I} =
'8 =T, for greatest simplicity. We note that both of the
mixed states written above have the property that they
retain their form under these Kraus operators. For pure
dephasing noise, the diagonal elements are constant
[a(z) = 1/9, d(t) = 0] and the Kraus operators give 7 =
4 — 2(r) = 4 exp[—T',1], and then the phase-noise concur-
rence decays asymptotically exponentially:

CP™ (1) = (2A/9) exp[—T'»7]. (13)

For longitudinal (amplitude) noise, the Kraus operators
are slightly different (see [11]), but a direct calculation for
the one-parameter example above gives
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A A
=g~ z2(1) = ) exp[—T'y7], (14)
1 1
a= §_, a(t) = § exp[—2rll], (15)
I, .8,
d=0—’d(t)=§wl+§w1’ (16)

where w; = /1 —exp[—I';7] and I'; is the longitudinal
decay rate for amplitude noise. From these, one easily
shows that in the range 4 = A = 3 the amplitude-noise
concurrence is given by

(1) = 3[4 = \Jwh + 8wilexp[~T 1]

Therefore, our bipartite entanglement under amplitude
noise also decays smoothly and asymptotically exponen-
tially to zero. With these two exercises in hand, we con-
clude that for our mixed two-party system the
entanglement decays asymptotically smoothly to zero in
the presence of either weak amplitude noise or weak phase
noise.

Now we consider the issue of additivity and allow the
weak noises to be applied together. All two-party density
matrix elements decay at the sum of their respective phase
and amplitude rates, as the additivity theorem ensures.
However, for the entanglement measure of coherence, the
consequence is strikingly different. Because the off-
diagonal element z = A/9 decays at the sum of the sepa-
rate phase- and amplitude-noise rates, the two-noise con-
currence takes the form:

A7)

C;/)\h.+am.(t) = 2max{0, Ae T2/ — w‘f + 8&)%}, (18)

which has lost any trace of relaxation additivity, particu-
larly the property of an asymptotically smooth approach of
entanglement to zero. As we show in Fig. 1, over a con-
tinuous range of physical A values, C2"*™(z) actually
goes abruptly to zero in a finite time and remains zero
thereafter. This is the effect that has been called “entan-
glement sudden death” (ESD) [12], and it arises here more

187147y
7 )}
!

FIG. 1 (color online). The graph shows C, vs A and ¢ under the
influence of combined phase and amplitude noise. The conse-
quence is that (8) disentangles completely and abruptly in just a
finite time for all A in the range shown.

or less from nowhere, since there is no local effect, under
the action of either of the weak noises, indicating that it
should be expected. The present result shows that ESD is
one consequence not previously noted, indicating neces-
sary departures from standard elements of open-system
theory in multiparty relaxation, even for ideally weak noise
influences.

It is important to emphasize that our special one-
parameter example is not a singular case. The simplest
verifications of this can be made by just retaining d = 0
within the more general matrix class (6). The outcome of
fairly straightforward calculations for the entire class is
illustrated by the diagrams in Fig. 2. Part (i) shows that
under pure amplitude noise either ESD or pure exponential
decay may occur, with the boundary between them given
just by @ = |z|2. Part (ii) indicates that for the entire range
of a and |z| under pure phase noise the decay is purely
exponential. However, (iii) shows that under the combina-
tion of phase and amplitude noise every initial state (6) will
disentangle abruptly. This directly shows that, when the
parameters lie in the zone a = |z]?, nonadditivity occurs
for entanglement decay rates.

We end our examination with a general observation. The
calculations displayed here reach only a small corner of a
new domain of noise physics. Wider questions can also be
answered. What if one applies both phase noise and am-
plitude noise to subsystem A alone, leaving B totally noise-
free? One finds that this is enough to impact the bipartite
AB entanglement just as strongly as before. What if one
applies only phase noise to subsystem A and only ampli-
tude noise to B? In that case, both A and B have to relax
normally, but their mutual entanglement does not. These
results can be verified by straightforward calculations. The
fact that the same conclusion applies no matter where one
looks in this domain demonstrates that information about
an open bipartite quantum system will become degraded

Ampl. Phase Both
1 1 1
a ESD a a
exp ESD
exp
0 1zl ! 1zl ! 0 1zl !

FIG. 2. This diagram shows the dramatic effect of the combi-
nation of two noises, amplitude and phase noise in this case, on
all initial states (6) with d = 0. (i) Amplitude noise can lead to
entanglement sudden death (dark zone), but for a large parameter
range (white zone, a < |z|*) the entanglement only decays
exponentially. (ii) Under phase noise, the initial entanglement
always decays exponentially (white zone). (iii) However, when
the noises are combined, all initally entangled states suffer
sudden death (dark zone). In each part, the solid-line segment
(a=1/9, 1/3 = |z| = 4/9) shows the parameter range associ-
ated with the particularly simple concurrence C, that we dis-
cussed in detail.
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with time as an indivisible quantum unit, no matter how its
parts are engaged by weak noises, and the degradation is
not predicted by the familiar smoothly decaying behavior
familiar from the quantum theory of single open systems.

To summarize, in this Letter we introduced a commonly
occurring category of two-system mixed states, shown in
(6). By following their time-dependent behavior under the
influence of ideally weak noises, we demonstrated the
presence of elements of open quantum system theory not
previously encountered. These become interesting when-
ever a small system has different quantum parts that can be
entangled. Exactly this situation will arise, for example, in
a quantum computer, where it is most desirable that two
qubits retain a nonzero degree of mutual cross entangle-
ment. It must be emphasized that none of our key AB
results come from interaction or communication between
the A and B parts of the two-party system or between their
separate reservoirs.

This is perhaps the most striking aspect of the properties
described: They are properties of joint-system information
rather than joint-system interaction. To the extent that
joint-system information is a resource of substantial value
in one or another practical application of qubit networks,
this aspect of time-dependent entanglement will be impor-
tant. At the same time, it illuminates further the difficult
fundamental challenge to understand the nature of coher-
ence in multipartite mixed states, particularly in its time-
dependent behavior, which has recently come under ex-
amination in both continuous spaces [13—15] and discrete
spaces (qubit pairs [16—20], finite spin chains, and ele-
mentary lattices [21-24]) and decoherence dynamics in
adiabatic entanglement [25], as well as in situations with-
out relaxation [26] and in connection with direct entangle-
ment observation [27]. These have all contributed to
increased awareness of this domain.

Finally, it should be emphasized that, although entan-
glement measured by concurrence is not an observable
represented by an Hermitian operator, nevertheless it is
still possible to express the concurrence (7) in terms of the
expectation values of certain ordinary physical observables
[28]. Moreover, the recent proposals to directly measure
the dissipative entanglement evolution have opened up a
possibility of experimentally demonstrating the onset of
the nonadditivity when nonlocal coherence decay is con-
cerned [27,29].
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