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Shear-Flow-Induced Unfolding of Polymeric Globules
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The behavior of a single collapsed polymer under shear flow is examined using hydrodynamic
simulations and scaling arguments. Below a threshold shear rate y*, the chain remains collapsed and
only deforms slightly, while above y* the globule exhibits unfolding/refolding cycles. Hydrodynamics are
crucial: In the free draining case, y* scales with the globule radius R as 7* ~ R™!, while in the presence of
hydrodynamic interactions y* ~ R. Experiments on the globular von Willebrand protein confirm the
presence of an unfolding transition at a well-defined critical shear rate.
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The dynamics of polymers subject to shear flow has been
intensely studied due to its fundamental and practical
relevance. Consideration was given to single polymers
[1-3] as well as to polymer melts [4]. One conclusion
was that polymers under good solvent conditions in simple
shear flow show pronounced conformational fluctuations,
exhibiting periodic elongation, relaxation, and tumbling,
even at relatively small shear rates of the order of the
inverse polymer relaxation time [2,5]. It was shown that
the mean extension varies smoothly with shear rate, and,
thus, no well-defined deformation transition exists [1,2].
For polymers under bad solvent conditions, on the other
hand, grafted chains were predicted to exhibit a globule-
stretch transition at a critical shear rate [6]. However, the
behavior of free (i.e., nongrafted) globular polymers sub-
ject to shear flow has received little attention. This is
surprising in light of the direct relation to protein stability
under shear flow, a subject of immediate physiological and
technological relevance.

Our motivation comes from recent studies on the
von Willebrand factor (vWF), a large multimeric glyco-
protein that is found in blood plasma and connective tissue
of blood vessels. The vWF is assembled via covalent
disulfide bonds from hundreds of monomeric units, each
consisting of 2813 amino acids, and is one of the largest
soluble proteins known [7]. The vWF plays a central yet
not fully understood role in the process of blood clotting;
its activity seems to be regulated by hydrodynamic shear,
which in small arterioles is of the order of ¥ =~ 1000 s!
and reaches up to ¥ =~ 10000 s~! in partly clogged coro-
nary arterioles [8]. Single-molecule studies of surface-
adsorbed VWF revealed that fluid shear rates of about
3000 s~ ! are sufficient to unfold vWF into thin fibers [9],
suggestive of a close function-conformation relationship in
vWF physiological activities. Video-microscopy data for
the stretching of fluorescently labeled vWF in a microflow
chamber, which are compared with our simulation studies
in this Letter, demonstrated recently that shear-induced
unfolding of vWF also occurs in bulk at comparable shear
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rates of about 5000 s~! and thus requires no surface bind-
ing [10]. In this Letter, we study the mechanism of shear-
induced globule unfolding and, in particular, work out the
dependence of the critical shear rate on the globule size and
cohesive strength using scaling and simulation, in both the
presence and the absence of hydrodynamic effects. The
mechanism we propose is different from the breakup of
fluid spheres in shear [11] and involves the coupling be-
tween hydrodynamic drag and globule fluctuations in the
form of thermally induced polymeric protrusions that tran-
siently form at the surface of the rotating globule. For
collapsed polymers, the unfolding transition appears as a
rather sharp increase of the mean polymer extension at a
well-defined critical shear rate, in qualitative agreement
with experimental results for the vVWF.

In our model, the polymer is made of N beads of radius a
interacting through a potential U. The dynamics of the ith
bead position r; is given by the Langevin equation

d
Pyl v(r;) — ;”’ij -V U@ + &), (D

where v(r) is the undisturbed solvent-flow profile, and &; is
a vector random force that satisfies (&;(1)&(¢)) =
2kpTpm;;6(t — t'). For simple shear flow v(r) = yzX,
where 7 is the shear rate, z the height, and X the unit vector
parallel to the x axis. Hydrodynamic interactions are cap-
tured through the mobility matrix u;;. We consider two
scenarios: the free draining (FD) model that neglects hy-
drodynamic interactions between monomers with a mobil-
ity matrix givenby p;; = u(0;;1, where w is the mobility
of a sphere of radius a, i.e., wy = 1/67na (n denotes the
viscosity of the fluid). The other case is the hydrodynamic
interacting (HI) model where the mobility matrix is given
by the Rotne-Prager tensor, which correctly accounts for
long range hydrodynamic effects and solvent-flow stagna-
tion inside the globule [3,12]. Comparing results for the
two models allows one to access the importance of hydro-
dynamics. The potential energy U = U, + Uy; accounts
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FIG. 1. Rescaled radius of gyration R%/Na? as a function of
the attraction strength € in the absence of shear. The inset shows
data for N =50 together with the curvature ¢ =
9*(R2/Na*)/9&. The theta point and the maximum curvature
point are denoted by €, and €., respectively.

for the connectivity of the chain, U=
KkpT SN N(riv1; — 2a)*, where r;;; is the distance be-
tween adjacent beads along the chain, and the spring
constant is taken to be k = 200/a?, which limits stretching
of the chain. The second term is a Lennard-Jones potential
Upy = &kpTy ;[2a/r; )'* — 2(2a/r;;)°], where & deter-
mines the depth of the potential (in units of kzT) and r, ; is
the distance between the ith and the jth bead. We discretize
Eq. (1) with a time step ranging from 10~%7 to 1077,
where 7 is the characteristic monomer diffusion time 7 =
a’/uokgT. Averages are taken over a total number of
Langevin steps of at least 2 X 107, with the first 10°
simulation steps typically discarded for equilibration.

In the absence of shear, we define the collapse point €.
as the maximum in the curvature of the radius of gyration
¢ = 9%R3/Na*)/9& (Fig. 1). For a polymer with N =
50, we find €., ~ 0.66, in close agreement with previous
simulation studies [13]. In the limit N — oo, the collapse
point €., approaches the 6 temperature, located at
ENT° = &, =~ 0.314 [14], at which the polymer is ideal.
For a finite chain length, €., gives a heuristic but robust
measure of the threshold of chain compactification.

At the top of Fig. 2, we show snapshots of a collapsed
polymer (€ = 2.08) at a shear rate y7 = 1.2 slightly above
the unfolding threshold. The upper row displays the for-
mation of a protrusion (encircled beads) that eventually
leads to a stretch-fold event. Below, we present time se-
quences of the extension R, (defined as the projected
polymer length along the flow direction; see snapshots)
for three different shear rates. R is measured directly in
experiments with fluorescently labeled polymers [2,5].
One discerns two dynamical regimes: For low shear rate
v7 = 0.5 (black trace in the first sequence), the chain
remains collapsed, in contrast to an uncollapsed polymer
€ = 0.416 (light gray curve in the upper sequence) where
strong length fluctuations are observed. As the shear rate y
is increased to y7 = 1.2, the chain starts exhibiting pro-
nounced and repeated elongation and folding events, as
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FIG. 2 (color online). Top: Snapshots of a polymer with N =
50 and € = 2.08 undergoing stretch-folding events at a dimen-
sionless shear rate of y7 = 1.2. The upper row shows the
formation of a protrusion (encircled beads), followed by a
stretch-fold event displayed below. Bottom: Typical extension
sequences as a function of time for the FD case for € = 2.08 and
shear rates y7 = 0.5, 1.2, and 5. For comparison, we also show
data for y7 = 0.5 for an uncollapsed polymer with € = 0.416
(light gray curve). The dashed rectangle denotes the stretching
event from which the snapshots were taken.

shown in the middle panel and the snapshots. Further
increase of the shear rate to y7 = 5.0 leads to a higher
frequency of stretching events.

In Fig. 3, we show the mean extension (R;) for a chain
with N = 50 as a function of the dimensionless shear rate
v for different values of the attraction strength €. FD and
HI simulations are distinguished by open and solid sym-
bols, respectively. As seen, a collapsed chain undergoes a
transition to an extended state beyond a “‘critical’’ shear
rate " in both models, and this transition sharpens as the
cohesive strength increases (for comparison, the data for an
uncollapsed polymer with & = 0.41, open circles, exhibits
merely a smooth unfolding crossover). The transition point
v* is defined by the maximum of the variance of the
squared chain stretching m = ((R}) — (R2)?)/{R?)?>. For
the particular case N = 50, € = 1.25, m is denoted by
crosses and exhibits a sharp peak at y*7 = 0.1. Squares
in Fig. 3 denote the mean stretching of the fluorescently
labeled vWF as obtained in a microfluidic chamber by
video microscopy [10]. Note that the vWF is not attached
or bound to a surface but freely suspended in the sheared
solution. The shape of the experimental curve is similar to
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FIG. 3. Rescaled chain extension (R,)/2Na for N = 50 and
different cohesive strengths € with (HI, solid symbols) and
without hydrodynamic effects (FD, open symbols) as a function
of the rescaled shear rate y7. Crosses represent the rescaled
variance m of R? for &= 1.25 in the FD case. Experimental
results (solid squares, upper horizontal axis) for vVWF proteins

were obtained in a microfluidic chamber [10].

simulation data for strongly collapsed polymers and, thus,
confirms the presence of a well-defined unfolding
transition.

We now introduce a simple scaling model for the globule
unfolding in shear. We first note that, in the absence of
thermal shape fluctuations, highly viscous spherical fluid
drops are stable for any shear rate [11] (clearly, the vis-
cosity of a polymeric globule is much higher than that of
the surrounding solvent). This suggests a fluctuation-
induced mechanism: Indeed, the numerically determined
critical shear rate depends strongly on temperature (as
shown below). The snapshots in Fig. 2 identify polymeric
protrusions as the prevalent excitation mode. Approxi-
mating the globule shape as a sphere of radius R, the
hydrodynamic drag force f on a protruding polymer seg-
ment of length [ [see Fig. 4(a) for a schematic drawing] is
in the freely draining (FD) case given by frp ~ VRI/(uoa)
[15]. In the hydrodynamic case, there is no slip at the
globule-solvent boundary, but the difference between sol-
vent and sphere velocity gradually increases away from the
sphere surface. The force on a protrusion is obtained by
integrating the hydrodynamic drag over the protrusion
contour using the analytical expression for the flow profile
around a sphere in shear flow [16]. The resulting radial
force is maximal for an orientation # = 45° and to leading
order in I/R reads fy ~ yI*/(amoR), as will be explained
in more depth in a longer paper [17]. The maximal tangen-
tial force is obtained for § = 0° and scales identically. Not
too close to the collapse point, the restoring force on a
protrusion should be linear in € and scale as [, ~
(kgT/a)A&(l/a)*~', where the shift in the interaction
parameter A€ = (€ — €,,;) accounts for the configura-
tional entropy loss in the globule. For a protrusion much
longer than the globule/solvent interfacial width, one has
a = 1, while for a shorter protrusion, one expects & = 2 in
the harmonic approximation. From the equipartition theo-

rem, the typical protrusion length [ follows as [~
aA& '/ Comparing the hydrodynamic drag frp or fi
(which tends to elongate protrusions) with the cohesive
force fr, (wWhich pulls protrusions back into the globule)
and inserting the typical protrusion length, one obtains for
the threshold shear rate y*:

.« __[A&*a/R (FD),
YT {AE“/O‘R/a (HI). 2)
Note that the dependence on the globule radius is opposite
when hydrodynamic effects are included. In the HI case,
the critical shear rate increases as R grows, since a larger
sphere leads to a reduced fluid shear rate at its surface
[16,17]. Our argument identifies the critical shear rate at
which the hydrodynamic drag on a typical protrusion is
large enough to overcome the restoring force from
monomer-monomer attractions, similar to classical nuclea-
tion theory. Global free energy arguments are irrelevant,
since a polymeric protrusion nucleus which has not
reached the threshold length will be wrapped around the
incessantly rotating globule and be eliminated within one
period of revolution.

In Fig. 4(b), we compare simulation results for the
critical shear y*7 with the scaling prediction for the FD
(using a = 1, solid line with slope 1) and HI cases (a = 2,
dashed line with slope —1), confirming the different scal-
ing dependence on globule radius in the two cases. In the
simulation, the globule radius R, is defined as the exten-
sion in the absence of shear, ie., Ry = (R,/a);—.
Different values of a point to a sharp globule-solvent
interface in the FD case (characterized by @« = 1) and a
presumably hydrodynamically roughened interface in the
HI case (a = 2). Deviations of the HI data from the scaling
prediction [the dotted line in Fig. 4(b) has slope 0.69 and is
a best fit to the data] are brought out more clearly in
Fig. 4(c), where we plot the rescaled critical shear rate
v*7R, for the FD case and y*7/R, for the HI case as a
function of the cohesion variable A&. The freely draining
data now exhibit two regimes: Close to the collapse tran-
sition, one finds a = 2 characteristic of protrusions shorter
than the globule interfacial width, and further away the
data are described well by a = 1, as expected; the cross-
over occurs at A€ = (.4. In the limited range available for
the critical shear rate, the hydrodynamic data show behav-
ior close to the scaling prediction; the broken line has
slope 2 and corresponds to a = 2, and the dotted line has
slope 1.38. Reasons for deviations are probably a break-
down of the simplified assumption about the spherical
shape of the globule and the globule-solvent interface,
which are both perturbed by hydrodynamic drag effects.

Our studies reveal the scaling of the critical shear rate for
unfolding of globular polymers with various parameters.
The particular value of y* depends strongly on the attrac-
tion forces between monomers and on the size of the
polymer. Coming back to vWF in the bloodstream, with
carefully tuned globule size and cohesive energy, unfold-
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(a) In the scaling model, a polymer strand of length [ protrudes from the spherical globule of radius R, which is rotating in the

shear flow. (b) Dimensionless critical shear rate y*7 for the FD and HI cases (open and solid symbols, respectively) as a function of the
rescaled radius according to Eq. (2). (c) Rescaled critical shear rate Ryy"r as a function of A& for N = 50 in the FD case (open
triangles). The solid symbols correspond to the rescaled critical shear rate 7*7/R, in the HI case. In both graphs, the solid and dashed
lines correspond to the scaling predictions with &« = 1 and a = 2, respectively. The dotted lines are fits to the data; see text.

ing can occur preferentially near the surface of a capillary
where the flow gradient and, thus, the shear rate are maxi-
mal and where presumably the unfolding of vWF has an
important physiological function [8]. Converting Eq. (2)
to physical variables, the critical shear in the experimen-
tally relevant HI case scales as 7" ~ 7~ '(A&)**R, ~
n 'a 3 (Ae)*N'3(kzT)' =/ and, thus, shows a pro-
nounced temperature dependence, where A€ is a measure
of the temperature-independent contact energy between
two monomers. Let us discuss two limits for this contact
energy: In the case of unspecific binding, one would expect
the energy to scale with the contact area between mono-
mers Ae ~ a’o, where o denotes the interaction energy
per unit area, leading to ¥* ~ a¥* 3¢g*2N'/3_ For any
value @ < 8/3, an increase in a would increase y*. In the
case of specific monomer binding (probably more relevant
for vVWF), A€ is independent of a, and thus * ~ a 3N'/3.
The critical shear rate is seen to depend strongly and
inversely on monomer size and only to a lesser degree on
monomer number or, equivalently, polymer length. Let us
now obtain numerical prefactors: A collapsed chain with
N = 50 and a monomer-monomer cohesive strength € ~
2kgT (which is a typical number for hydrogen bonds and
probably of the right order for vVWF, which unfolds already
upon adsorption to a mildly hydrophobic surface [9]) un-
folds at y*7 = 9 in the HI case (see Fig. 3). In order for
such a protein to unfold at a typical shear rate in a human
capillary of ¥ ~ 1000 s~ ! [8] and using for the viscosity of
water 7 = 1073 Pas, the required monomer radius a turns
out to be of the order of a ~ 100 nm, which is close to the
actual size of a vVWF monomer [9]. Our results thus suggest
that the vVWF monomer is so large in order for it to unfold at
physiological shear rates.

In summary, we have shown that collapsed chains under
shear unfold above a well-defined threshold shear rate.
Hydrodynamic effects are crucial and change the depen-
dence of the critical shear rate on the length of the polymer
compared to the free draining case. Qualitative agreement
with the unfolding of the vWF protein in a microfluidic
chamber is obtained, and the importance of the monomer

size is elucidated. The shear-induced unfolding of proteins
and globular polymers is relevant for food-processing and
medical or biotechnical applications.
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