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The efficiency of filters depends crucially on the mass of the particles one wants to capture. Using
analytical and numerical calculations we reveal a very rich scenario of scaling laws relating this efficiency
to particle size and density and the velocity and viscosity of the carrying fluid. These are combined in the
dimensionless, so-called Stokes number St. In the case of horizontal flow or neutrally buoyant particles,
we find a critical number St. below which no particles are trapped; i.e., the filter does not work. Above St,.
the capture efficiency increases like the square root of (St — St.). Under the action of gravity, the threshold
abruptly vanishes and capture occurs at any Stokes number increasing linearly in St. We discovered
further scaling laws in the penetration profile and as function of the porosity of the filter.
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In many areas of application as for instance chemical or
environmental engineering or medicine, air, and water
purification or segregation via filtration play a crucial
role [1-3]. In particular, we will focus here on deep bed
filtration where the particles in suspension are much
smaller than the pores of the filter which they penetrate
until being captured at various depths. For non-Brownian
particles, at least four capture mechanisms can be distin-
guished, namely, the geometrical, the chemical, the gravi-
tational, and the hydrodynamical one [1]. Detailed
laboratory experiments were conducted some years ago
by Ghidaglia et al. [4] evidencing a sharp transition in
particle capture as a function of the dimensionless ratio
of particle to pore diameter characterized by the diver-
gence of the penetration depth.

In this Letter we will focus on the inertial effects in
capture which constitute an important mechanism in most
practical cases and, despite much effort, are quantitatively
not yet understood, as reviewed in Ref. [5]. The effect of
inertia on the suspended particles can be quantified by the
dimensionless Stokes number,

St = Vdip,/18¢p, (1)

where d, and p, are the diameter and density of the
particle, respectively, € is a characteristic length of the
pores, w is the viscosity, and V is the velocity of the fluid.
Inertial capture by fixed bodies has already been described
since 1940 by Taylor and proven to happen for inviscid
fluids above a critical Stokes number [6]. This phenome-
non has been studied on fixed, periodic arrays of rectangles
and cylinders [7] without a more detailed discussion about
the nature of an eventual transition.

Let us start by considering an infinite ordered filter
composed of a periodic arrangement of fixed circular
obstacles (e.g., cylinders). For instance, this type of model
has been frequently used to describe the porous geometry
of fibrous filters [8]. This system can then be completely
described by a single square cell of unitary size and poros-
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ity e = (1 — wD?/4), where D is the actual diameter of the
obstacle, as shown in Fig. 1. Assuming Stokesian flow
through the void space of this cell and that u = 0 at the
boundary, the governing equation for the stream function ¢
is given by V4 = 0. An analytical solution #(x, y) for this
linear biharmonic equation has been given by Marshall
et al. [8]. We use this solution to obtain the velocity flow
field u(x, y), which is nonuniform, and to study the trans-
port of pointlike particles numerically. As a first approxi-
mation, we assume that the influx of suspended particles is
so small that (i) the fluid phase is not affected by changes in
the particle volume fraction and that (ii) particle-particle
interactions are negligible. Moreover, we also consider that
the movement of the particles does not transfer momentum
to the flow field [9]. Finally, if we assume that the drag
force and gravity are the only relevant forces acting on the
particles, their trajectories can be calculated by integration
of Newton’s equation [10]:

du), _ (u* - UZ)
dt* St
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where F, = (p, — p)¢lgl/(V?p,) is a dimensionless pa-
rameter, g is gravity pointing in the positive x direction, ¢*
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FIG. 1. Particle trajectories when released from different posi-
tions at the inlet of the periodic filter cell. The thick solid lines
separated by a distance & at the releasing point correspond to the
trajectories that limit the trapping zone in the flow.
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is a dimensionless time, and uj’, and u” are the dimension-
less velocities of the particle and the fluid, respectively.

We show in Fig. 1 some trajectories calculated for
particles released in the flow for St = 0.25. Once a particle
touches the obstacle, it gets trapped. Our objective here is
to search for the release position y, at the inlet of the unit
cell (x, = 0) and above the horizontal axis (dashed line in
Fig. 1), below which the particle is always captured and
above which the particle can always escape from the
system. Here we assume that the y component of the
particle velocity at the inlet is equal to zero, while the x
component is set to be equal to the fluid velocity at this
location. As depicted in Fig. 1, the particle capture effi-
ciency can be quantitatively defined as 6 = 2y,. In the
limiting case St — oo, since the particles move ballistically
towards the obstacle, the particle efficiency reaches its
maximum, 6 = D. For St — 0, on the other hand, the
efficiency is smallest, & = 0. In this last situation, the
particles can be considered as tracers that exactly follow
the streamlines of the flow, avoiding trapping.

In Fig. 2 the normalized capture efficiency &/D is
shown as a function of the Stokes number for different
values of gravity. Interestingly, only for the zero gravity
case does the capture efficiency vanish at a finite Stokes
number St... For any finite value of g, no matter how small,
we find a finite efficiency for positive Stokes numbers.
Gravity therefore drives the system to a new fixed point
with vanishing critical Stokes number.

Next we analyze the critical behavior. In Fig. 3, we show
the log-log plot of the variation of §/D with the rescaled
Stokes number in the presence of gravity for three different
porosities. In all cases, the variable 0 increases linearly
with St to subsequently reach a crossover at Sty, and
finally approach its upper limit (6 = D). The results of
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FIG. 2 (color online). Normalized capture efficiency & as
function of the Stokes number St for different values of gravity.
For reference, F, = 16 in Eq. (2) corresponds to a value that is
compatible with the experiments of Ref. [4] when subjected to
the gravity on Earth.

our simulations also show that Sty ~ (€ — €pi,), Where
€min corresponds to the minimum porosity below which
the distance between inlet and obstacle is too small for a
massive particle to deviate from the obstacle. We confirm
the validity of this rescaling approach through the collapse
of all data as shown in Fig. 3.

The capture behavior becomes significantly different in
the absence of gravity, as shown in the inset of Fig. 3. The
efficiency 6 remains equal to zero up to a certain critical
Stokes number, St., that corresponds to the maximum
value of St below which particles cannot be captured,
regardless of the position y, at which they have been
released. This is in fact an intricate consequence of the
shape of the flow lines as obtained in Marshall’s solution
[8]. Although controversial [7], some hints for such a finite
critical point can be found in previous studies, where
potential as well as viscous flow conditions had been
considered [11]. Right above St,., the variation of & can
be described in terms of a power law,

& ~ (St — St,)?, 3)

with an exponent & = 0.5. Our results show that, while the
exponent « is practically independent of the porosity for
€ > 0.8, the critical Stokes number decreases with €, and
therefore with the distance from the obstacle where the
particle is released (see Fig. 3). To our knowledge, the
nature of this singularity behavior, which resembles a
second order transition, has never been reported before.
Filters are typically disordered. Therefore we adopt now
a random pore space geometry that is often used to de-
scribe porous media [12]. As shown in Fig. 4, it consists of
nonoverlapping circular obstacles of diameter D, separated
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FIG. 3. Log-log plot of the dependence of the capture effi-
ciency & on the rescaled Stokes number St/(e — €n;,) for a
periodic filter in the presence of gravity. Same parameters as in
Fig. 2. The inset shows that the behavior of the system without
gravity can be characterized by 6 ~ (St — St.)¢, with @ = 0.5
and St. = 0.2679 = 0.0001, 0.2096 = 0.0001, and 0.1641 =
0.0001, for € = 0.85, 0.9, and 0.95, respectively.
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FIG. 4 (color online). Velocity magnitude for a typical real-
ization of a pore space (e = 0.7) subjected to low Reynolds
conditions. Fluid is pushed from left to right. The colors ranging
from blue to yellow (dark to light grey) correspond to low and
high velocity magnitudes, respectively. Also shown are typical
trajectories of particles. Gravity points in the positive x direction,
and the Stokes number is St = 0.01.

by a distance larger than D/10, that are randomly allocated
in a two-dimensional channel of width 4, until a prescribed
void fraction € is reached. For compatibility between the
periodic and disordered descriptions, we take the charac-
teristic pore size to be £ = D /20 (i.e., half of the minimum
distance between any two obstacles of the disordered
system). Periodic boundary conditions are applied in the
y direction. We use the same geometrical and physico-
chemical parameters of the experimental set described in
Ref. [4].

The fluid mechanics in the porous space is based on the
assumptions of a continuum, Newtonian, and incompress-
ible fluid flowing under steady state conditions. Thus, the
local velocity and pressure fields of the fluid, u and p,
follow the Navier-Stokes and continuity equations. We
consider nonslip boundary conditions along the entire
solid-fluid interface. In addition, a uniform velocity profile,
u,(0, y) = Vand u,(0, y) = 0, is imposed at the inlet of the
channel. The Reynolds number is defined as Re =
pVh/u, where p is the density of the fluid. For simplicity,
we restrict our study to the laminar viscous regime, i.e.,
the case where the Reynolds number is sufficiently low
Re < 1).

We obtain the numerical solution of the Navier-Stokes
and continuity equations through discretization by means
of the control volume finite-difference technique [13].
Considering the complex geometries involved, we build
an unstructured mesh of triangular grid elements based on
a Delaunay network. For a porosity € = 0.6 we need
approximately 10° cells to generate satisfactory results.

The local velocity magnitude for a filter of porosity € =
0.7 can be seen in Fig. 4. The transport of momentum
through the complex geometry generates typical preferen-
tial channels [14]. Once the velocity and pressure fields are
obtained for the flow, we proceed with the calculation of
particle transport. As before, we assume that the only
relevant forces acting on the particles are drag and gravity
[15] and calculate the trajectories of the particles through
numerical integration of the equations of motion. In order
to account for spatial fluctuations of the velocity field, we
adopt here the empirical relations proposed by Morsi and
Alexander [16], where the local drag is calculated as a
function of the local Reynolds number.

We also see in Fig. 4 typical trajectories of particles that
have been released from different positions at the inlet of
the filter for St = 0.01. For a fixed value of St, we consider
up to 1000 particles to determine (i) whether these particles
get trapped and (ii) the precise position where their capture
takes place. From these positions, we plot in the inset of
Fig. 5 the profiles of the fraction of noncaptured particles ¢
against the distance x from the inlet. In the limiting case of
a very dilute system (e = 1) with particles being trans-
ported in the ballistic regime (St — 00), it is easy to show
that ¢(x) = exp(—x/A), with a penetration length given by
A = 7D/4(1 — €). For low and moderate values of St, the
behavior of ¢(x) is still exponential, but A now being a
function of the Stokes number. We postulate that for any
combination of € and St the previous result can be gener-
alized to the following “‘ansatz’:

A= 7D?*/4(1 — €)5, 4)

the length & being the capture efficiency analogously
defined as for the periodic filter. As shown in Fig. 5, the
penetration length follows a power law A ~ (St)~%, with a
scaling exponent a = 1 that is, within the numerical error
bars, the same for all values of porosity investigated.
Simulations performed for different realizations of the
disordered filter resulted in the same exponent. This value
is also consistent with the exponent found before for the
periodic case with gravity.
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FIG. 5. Log-log plot showing the dependence of the rescaled
penetration length (1 — €)A/D on the Stokes number St for three
different porosity values. The solid line corresponds to the best
fit to the data of the scaling function (1 — €)A/D = BSt™* with
the prefactor 8 = (0.058 and the exponent & = 1.00 = 0.02. The
inset shows the profiles of ¢ against x corresponding to a
porosity € = 0.7 and different values of the Stokes number.
From top to bottom, St = 2.06 X 1074, 3.26 X 1074, 5.18 X
1074, 82X 1074, 1.3X 1073, 206X 1073, 3.26 X 1073,
5.18 X 1073, 8.2 X 1073, and 1.3 X 1072. The solid lines are
the best fits to the different data sets following ¢ = exp(—x/A),
with A = A(e, St).
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FIG. 6. Log-linear plot showing the global data collapse of the
number fraction of particles ¢(x) versus the rescaled distance
St(1 — €)x/L. The inset is also a semilog plot showing the effect
of inertia on the overall fraction ¢(L) for three different values
of porosities.

The data collapse obtained for different values of € as
seen in Fig. 5 suggests a relation

A B

D _Sl-e ©)
where B = 0.058, which for all practical purposes is a
constant for the porous geometry and particle capture
studied here. Indeed, as shown in Fig. 6, the data collapse
of all profiles of ¢ in terms of the rescaled variable
St(1 — €)x/L provides strong evidence that, under condi-
tions of viscous flow and drag transport, Eq. (5) should
remain valid for any value of € and St. A similar argument
can also lead to the data collapse of the overall fraction
¢(L) as seen in the inset of Fig. 6.

Summarizing, we have studied the capture of particles in
periodic and random filters. In the absence of gravity there
exists a finite critical Stokes number below which particles
never get trapped. Furthermore, we found that the transi-
tion between nontrapping and trapping right above the
critical point follows power-law behavior, with a scaling
exponent & = (.5. Including the action of gravity we show
that (i) the nontrapping regime is suppressed (i.e., St. = 0)
and (ii) the scaling exponent changes to a = 1. In the
future, we intend to investigate simultaneous multiple
particle release and the possibility of nontrapping at first
contact. It would be interesting to experimentally verify the
existence of a finite critical Stokes number when gravity is
canceled by using either a horizontal setup or neutrally
buoyant particles.
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