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Anisotropic dipolar systems are considered. Such systems in an external magnetic field are expected to
be a good experimental realization of the transverse field Ising model. With random interactions, this
model yields a spin glass to paramagnet phase transition as a function of the transverse field. We show that
the off-diagonal dipolar interaction, although effectively reduced, induces a finite correlation length and
thus destroys the spin-glass order at any finite transverse field. We thus explain the behavior of the
nonlinear susceptibility in the experiments on LiHoxY1�xF4, and argue that a crossover to the paramag-
netic phase, and not quantum criticality, is observed.
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The study of quantum phase transitions (QPT) is of
prime recent interest, as it is believed that the understand-
ing of the physics at the vicinity of quantum critical points
will shed light on some of the most interesting problems in
condensed matter physics, such as the metal insulator
transition, superconductor insulator transition, and high
temperature superconductivity. Quantum magnets, and,
specifically, their modeling by the transverse field Ising
model (TFIM)

 H � �
X
i;j

Jij�
z
i �
z
j ��

X
i

�xi ; (1)

are a particularly good laboratory to study QPT. This
model is rich enough to capture the interesting physics of
QPT yet simple enough to allow theoretical treatment.
Experimentally, much effort was invested to realize the
TFIM. Maybe the best realization is in anisotropic dipolar
systems, where the dipolar energy dominates the spin-spin
interaction and the crystal field (CF) generates strong
anisotropy. This results in a ground state (GS) Ising-like
doublet for the single spins and an effective reduction of all
but the longitudinal interaction terms.

Indeed, LiHoxY1�xF4, with x � 1, was shown [1] to
exhibit a ferromagnetic to paramagnetic (PM) transition
as a function of transverse fieldHt and temperature T. As x
is reduced, the randomness in the position of the magnetic
Ho atoms results in frustration, and for x � 0:167 a spin-
glass (SG) phase was observed [2,3]. Furthermore, apply-
ing Ht induces quantum fluctuations, leading to a PM
phase at large fields. Thus, this compound is considered
to be the archetypal experimental realization of a quantum
SG [4,5]. In this Letter, we show that, for anisotropic
dipolar glasses in general, and for the LiHoxY1�xF4 com-
pound in particular, the off-diagonal dipolar (ODD) inter-
action terms, albeit effectively reduced, qualitatively
change the physics of the problem. In particular, in the
presence ofHt, the ODD terms reduce the symmetry of the
system in comparison to the TFIM and render the latter
inadequate in studying the system. A proper treatment of
the ODD terms results in the absence of long-range SG

order at any finite Ht and a reduction of the cusp in the
nonlinear susceptibility (NLS) at the crossover (C-O) to the
PM phase. Thus, we argue that the experimental line drawn
at the peak values of the NLS [3] is not a phase transition
line. Except for the point atHt � 0, this line corresponds to
a C-O between a paramagnet to a phase we denote a
‘‘quasi-spin glass.’’ In this phase, the system separates
into domains within which the random ordering of the
spins is maintained. These domains have a typical size
��Ht� which dictates the correlation length in the system,
and its dependence on Ht is given by the critical exponent
� calculated below. The domain structure is maintained
until the C-O field, where fluctuations between the relevant
Ising-like states dominate and the system becomes PM (see
Fig. 1). This C-O is expressed as a cusp in the NLS.
Importantly, the reduction of � with increasing Ht results
in the corresponding reduction of the cusp in the NLS,
explaining the peculiar experimental result [3] where the
cusp is reduced with decreasing T. Interestingly, we show
below that at T � 0 the C-O takes place at a value of Ht

which corresponds to � � 1 and, therefore, to a complete
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FIG. 1 (color online). Schematic picture for the T � 0 behav-
ior of a dipolar Ising SG in a transverse field Ht. The typical size
� of a SG ordered domain (depicted below the x axis) decreases
withHt, with a critical exponent � (see text). At large enoughHt,
the system becomes PM, via a C-O and not a quantum phase
transition.
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absence of a cusp in the NLS, as can be inferred from the
experiment [3].

Theoretical considerations.—Our analysis is valid both
specifically to the LiHoxY1�xF4 system, as we further
comment on below, as well as to any anisotropic dipolar
system. The only requirement is that the single spins have a
GS Ising-like doublet, with a large energy separation to the
excited states. To emphasize the generality of our ap-
proach, we consider the following spin-s Hamiltonian

 H � �D
X
i

��Szi �
2 � s2� �

1

2

X
i�j
�;�

V��ij S
�
i S

�
j ��BHt

X
i

Sxi :

(2)

Here i and j denote the positions of the spins, randomly
diluted on some lattice, V��ij denotes the dipolar interaction
(�;� � x; y; z), and D> 0 is the CF anisotropy constant.
For Ht � 0, the GS of a single spin is doubly degenerate,
denoted j"si and j#si, with sz � �s. The first excited
states have sz � ��s� 1� and energy �0 � �2s� 1�D.
Throughout the Letter, we assume that �0 	
�BHt; Vmax, where Vmax is the largest dipolar energy be-
tween two spins in the system. We define H �H k 

H? such that
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We assume that the dilution is such that H k is equivalent
to the classical random bond Ising model with a low T SG
phase. As this classical dipolar Ising SG is equivalent to the
short-range Edwards-Anderson model [6,7] [Eq. (1) with
random nearest neighbor Jij and � � 0 [8]], our analysis is
done within the scaling (‘‘droplet’’) picture [9], which
accounts for its behavior at large sizes. The GS of H k is
then twofold degenerate [9] with states j oi; j � oi, which
are related by Sz ! �Sz symmetry, and in which each spin
is in either state j"si or j#si. Importantly, adding a trans-
verse field term preserves the above symmetry, and there-
fore the TFIM is the archetypal model for the quantum SG
phase. However, when adding H? which includes ODD
terms, this symmetry is not preserved. The GS degeneracy
breaks, and the system gains energy by choosing locally a
state similar to j oi or j � oi according to which optimizes
the energy gain due to H?.

Following the scaling picture of Fisher and Huse [9] and
using an Imry-Ma-like [10] argument, we calculate this
energy gain, i.e., the energy to flip a droplet of size L
having N � Ld spins, due to the addition of H?. This
energy gain [see Eq. (9)] is then compared with the energy
cost due to the domain wall formation, and the correlation
length � is obtained [Eq. (11)]. Consider first

 H 0
? � �

X
i�j

Vzxij S
z
i S
x
j ��BHt

X
i

Sxi : (5)

The addition of H 0
? to H k changes j oi ! j i and

j � oi ! j 0i with energies E and E 0 , respectively. The
energy the system gains by choosing locally the lowest
energy state is �E � jE � E 0 j, which we now calculate.

In second order perturbation, E � E o 
 E
�2�
 , where
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z
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x
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�0
: (6)

Here we used the fact that the only relevant excited states
are those in which one spin changes its state from sz � �s
to sz � ��s� 1�, and their energy is �0 in leading order.
Thus, the sum over the excited states can be taken out as
the identity operator. A similar equation holds for E 0 . One
can show that the terms with even powers of Ht are equal
for E and E 0 , while the term linear in Ht is equal in
magnitude but has opposite signs for E and E 0 [7]. Using
the fact that, since k � l, the operators commute, we obtain

 �E �
4

�0
h oj�BHt

X
i

Sxi
X
k�l

Vzxkl S
z
kS

x
l j oi (7)

and therefore

 �E � 4
s�BHt

2�0

X
k�i

Vzxki h ojS
z
kj oi �

2s�BHt

�0

X
i

hxi ; (8)

where we define hxi �
P
kV

zx
ki hS

z
ki as an effective transverse

magnetic field at site i. For each i, all of the Vki’s are small
except the few for which the sites i and k are spatially
close. Because of the randomness of the sign, retaining for
each i the term with the largest absolute value, denoted ~Vi,
gives a good approximation for �E up to a numerical factor
c of order unity. Since ~Vi is random in sign, the average
energy gained by flipping a droplet of N spins is given by

 h�Ei � c
s2�BHtV

����
N
p

�0
; (9)

where V is the average magnitude of j ~Vij, and we choose
j oi and j � oi such that �E> 0.

The above result (9) is central to our analysis, and, in
order to check our approximation of randomness leading to
it, we calculated the gap between the GS and the first
excited state numerically using Lanczos exact diagonaliza-
tion (ED) [11]. We consider system sizes in the regime
where they are much smaller than �. This is important for
our calculation, since then we are dealing with single
domains, and, therefore, the two lowest states correspond
to j i and j 0i and the gap to �E. To reproduce the
experimental situation, we focus on three-dimensional fi-
nite size clusters, randomly distributing N spins at the rare
earth sites of the LiHoxY1�xF4 lattice. Since we are inter-
ested in small fields, it is sufficient to use s � 1 particles
with on-site anisotropy �0. We therefore study the spin-1
version of H �H k 
H 0

?:
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Here and below, all energies are in units of the typical
nearest neighbor dipolar energy V0. We fixed the dilution
to x � 18:75% by using 2
 2
 N=3 unit cells, N being
the total number of spins (there are 4 rare earth sites per
unit cell). For this dilution, we find that V � 0:8. Lanczos
ED has been performed in the full d � �2s

1�N-dimensional Hilbert space for N � 6, 9, and 12 s �
1 spins [12]. For each size, the gap has been computed over
104 random samples. In Fig. 2, we present the numerical
results obtained in the perturbative regime [�0 	 �BHt

and ��BHt�
2=�0 � Vmax]. The

����
N
p

scaling of �E as stated
in Eq. (9) is clearly demonstrated, as we found a very good
data collapse for the distribution of ln��E=

����
N
p
�. The inset

in Fig. 2 also shows that the disorder average gap h�Ei �
�

����
N
p

. Confronting the numerical estimate obtained for the
prefactor � with Eq. (9), we get c ’ 1.

In order to obtain �, i.e., the typical domain size, we
compare the domain’s energy gain (9) to the energy cost
due to the formation of a domain wall. For the short-range
Ising SG, this energy is / L�, with � � 0:2 in 3 dimensions
[13,14]. Furthermore, under quite general conditions,
Fisher and Huse argued [9] that � � �d� 1�=2. For the
dipolar Ising SG, we expect the same scaling behavior with
a similar exponent �d ’ � to hold [6,7,9], and the energy of
flipping a domain is therefore � Vs2L�d . As a result, for L
such that �s2�BHtV

����
N
p
�=�0 >Vs2L�d , it will be prefer-

able for domains to choose their state between j i and j 0i
as the one that locally minimizes E�2� . This results in a
finite �;

 � �
�

�0

�BHt

�
1=�3=2��d�

: (11)

For the Ising SG in longitudinal field, it was argued [9,15]
and then verified experimentally [16] and numerically [17]
that there is no de Almeida-Thouless line [18] and no SG
phase at any finite field. At Ht � �0=�B, our system is
equivalent to the above model in small longitudinal fields,
and we thus argue that there is no SG phase at any finite
transverse field when the interaction is dipolar, and as
Ht ! 0, � diverges with the same form [9] of the critical
exponent � � 1=��3=2� � �d�.

In our treatment, the only dipolar terms we considered
are the longitudinal and the zx terms. However, one can
show that all the neglected terms [see the terms present in
H?—Eq. (4)—but not in H 0

?—Eq. (5)] do not contrib-
ute to �E in the second order perturbation expansion [7].

Interestingly, the two effects of Ht, i.e., inducing the C-
O to the PM phase and the reduction in � calculated above,
behave very differently as functions of Ht. The former is
dictated by fluctuations between the two single spin Ising
GSs, which depend on Ht to a high power, of order s, and
are practically negligible as long as Ht � �0=�B.
However, the fluctuations that dictate the reduction of �
at low transverse fields are between each single spin GS
and its first excited state at energy �0. The latter depend on
Ht to second order and result in a reduction of � which
depends on 1=Ht to a power � close to unity. Therefore, the
disordering of the SG order by Ht occurs in two stages. At
low field, domains of size � are formed, within which the
GS is very similar to either of the two zero field SG GSs. At
Ht � �0=�B, a C-O occurs where the order within each
domain is destroyed, and each spin fluctuates indepen-
dently. Importantly, when reaching the C-O region at
very low T, one is already in the regime where � � 1 in
units of interspin spacing, resulting in small features in the
relevant susceptibilities, in agreement with experiment
[2,3]. We emphasize that the understanding of the scenario
above requires a model in which the large spins are con-
sidered and the anisotropy is explicitly taken into account.
Indeed, the anisotropy energy �0 enters explicitly into
Eqs. (9) and (11). A presumably simpler spin-half model
with effectively reduced ODD terms will not be sufficient
[7], since in such a model the reduction in � and the C-O to
the PM phase are both induced by fluctuations between the
Ising GSs and have the same scale in Ht.

In addition to changing the symmetry of the system at
Ht � 0, resulting in the destruction of the SG phase and the
QPT to the PM phase, the ODD terms also enhance the
effective transverse field [19]. Although hxi [see Eq. (8)] is
a random quantity, we have shown that domains of size �
choose to be in a state equivalent to j i or j 0i by the
maximization of

P
ih
x
i . As a result, a net magnetic field in

the x direction hhxi i � h�Ei=N / �
�3=2 is added to the

external one. As the C-O is approached, � is small and
the effective transverse field due to the ODD interaction is
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FIG. 2 (color online). Distribution P [ ln��E=
����
N
p
�] plotted in a

semilog scale. Lanczos ED data obtained for the spin-1
Hamiltonian (10) with �0 � 50 and �BHt � 0:5 have been
collected over 104 random samples with the LiHoxY1�xF4

structure and x � 18:75%, for N � 6, 9, and 12. Inset: The
disorder average gap h�Ei vs

����
N
p

. The dashed line is a linear
fit h�Ei � �

����
N
p

, with � ’ 0:008.
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significant. We thus give a precise physical origin to the
conjecture made in Ref. [19].

Our analysis above could equally be done by
defining �E in Eq. (8) as

P
kh

z
khS

z
ki, where hzk �

�2s�BHt=�0�
P
iV

zx
ki . Using this definition, one can make

the analogy between the current problem to the Ising SG in
random longitudinal field, as an alternative to the direct
calculation of �E performed above.

Experimental consequences.—The CF Hamiltonian in
LiHoxY1�xF4 is different from the one given in Eq. (2).
Furthermore, the hyperfine interactions strongly renormal-
ize the parameters of the TFIM, invalidating the simple
model in the electronic degrees of freedom [19]. Still, for
our purpose here, an equivalent physical picture emerges:
The two relevant (electronuclear) Ising states of each Ho
ion couple very weakly at small Ht, and their correspond-
ing excited states are at � 10 K above the GSs. Thus, the
requirements for the validity of our theory given before
Eq. (2) are fulfilled. Our analysis and results [and, in
particular, Eq. (11)] are therefore directly applicable to
the SG experiments in the LiHoxY1�xF4 system [2,3],
with �0 � 10 K, and suggest that LiHoxY1�xF4 is not a
SG at any Ht � 0. Furthermore, the peculiar experimental
result [3] where the cusp in the NLS is reduced with
decreasing T is naturally explained: As T is reduced, the
C-O to the PM phase occurs at larger Ht. This results in
smaller � and, therefore, a diminishing of the cusp in the
NLS. In addition, the renormalization of the effective spin
[19] specific to the LiHoxY1�xF4 compound further re-
duces the NLS near the C-O.

From the experimental point of view, our analysis
changes the status of the field. The only claim for the
observation of the QPT between the SG and PM phases
was made in Ref. [3]. As we show that long-range SG order
is unstable to applied Ht, and, therefore, a phase transition
was not observed at low temperatures in the above experi-
ment, an experimental observation of this QPT is still
awaiting. Our analysis also points to the direction one
should take in seeking such a QPT: systems in which SG
order and quantum fluctuations compete, and either or both
are controllable by a parameter which does not change the
symmetry responsible for the GS degeneracy of the or-
dered state. An example would be the change, with applied
pressure, of CF terms which induce quantum fluctuations
between the Ising-like doublet [such as (S2


 
 S
2
�) terms

added to the Hamiltonian (2) for integer spin systems].
Recently, there is increasing experimental [16] and nu-

merical [17] support for the validity of the droplet picture
in describing short-range Ising SG, in general, and to its
prediction [9,15] of the nonexistence of a de Almeida-
Thouless line [18], in particular. For the anisotropic dipolar
systems discussed here, the C-O to the PM phase at Ht �
�0=�B is a result of quantum fluctuations, and there is no
analog to the de Almeida-Thouless line. However, atHt �
�0=�B, the system is equivalent to a classical Ising SG in a

small random longitudinal field. Thus, the above numerical
and experimental results [16,17] support the validity of the
droplet picture for dipolar Ising systems in small Ht as
well. Still, we believe that experiments that would directly
observe whether dipolar Ising glasses, in general, and
LiHoxY1�xF4, in particular, have a SG phase at a finite
Ht are of much interest, both as a verification of our results
and as additional support for the droplet picture in general.

Finally, our analysis is also applicable to any Ising SG
where dipolar interactions are present, even if the interac-
tion that governs the ordering is different. The correlation
length is then given by [7] �J � ��0J=�BHtV�

1=�3=2���,
where J is the dominant interaction. The qualitative
picture is similar, only the size of the domains at the
quantum C-O to the PM phase is � �JV�

1=�3=2���.
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