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We analyze the Kondo effect of a magnetic impurity attached to an ultrasmall metallic wire using the
density matrix renormalization group. The spatial spin correlation function and the impurity spectral
density are computed for system sizes of up to L � 511 sites, covering the crossover from L< lK to
L > lK, with lK the spin screening length. We establish a proportionality between the weight of the Kondo
resonance and lK as a function of L. This suggests a spectroscopic way of detecting the Kondo cloud.
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Scanning tunneling techniques have recently allowed
the observation of the Kondo effect of a magnetic atom
in an ultrasmall metallic box [1], possibly providing a
direct probe of the long sought-after Kondo screening
cloud. The Kondo effect is characterized by a narrow
resonance of width �TK, the Kondo temperature, at the
Fermi energy "F [2]. It is intimately related to the forma-
tion of a many-body singlet state, comprised of the impu-
rity spin and a cloud of surrounding, spin-correlated
electrons, the so-called Kondo spin screening cloud. Its
spatial extent is vital for the coupling between neighboring
Kondo impurities in a metal and, hence, is at the heart of
spatial magnetic correlations and ordering transitions in
Kondo and Anderson lattices and also in Hubbard or t-J
systems, which exhibit local Kondo physics, as has been
demonstrated by the dynamical mean field theory treat-
ment of the problem [3]. However, while the spectral and
thermodynamic features of Kondo impurities have been
well understood [2], the structure of the Kondo cloud has
remained controversial for a long time. Researchers have
been looking intensively for ways of observing the Kondo
cloud. These include the Knight shift [4] and, recently,
theoretical investigations of the persistent current [5] or the
conductance [6] in mesoscopic Kondo systems. For about
25 years it was generally believed, and in the 1990s sup-
ported by scaling arguments [7], that the Kondo cloud is
characterized by a single length scale, �K � @vF=TK. It is
the spin coherence length, i.e., the distance traveled by a
scattered electron with Fermi velocity vF, until the impu-
rity spin (whose lifetime is @=TK) flips. Although �K can
reach almost macroscopic values (�K � 103k�1

F for TK �
1 K, kF being the Fermi wave number), it has never been
observed in experiments.

Only recently it was realized that another length scale,
lK, arises in a d-dimensional Kondo system, if all conduc-
tion electron states couple equally to the impurity spin [8].
It is the length of a finite-size conduction electron sea, the
‘‘Kondo box’’, which is so small that its level spacing � is
comparable to TK of the bulk system and cuts off the
logarithmic Kondo correlations. Therefore, a box of length
lK sustains just one conduction electron state within the

Kondo scale TK to form the Kondo singlet [9], i.e. lK is the
size of the Kondo cloud, the Kondo screening length.
Equating � � TK, with � the inverse of the typical density
of states (DOS) in a box of size lK, N�lK� �
�lK=2��dSdk

d�1
F =�@vF�, yields,

 lK � 2���K=Sdk
d�1
F �1=d; (1)

with Sd the surface of the d-dimensional unit sphere [8].
Hence, lK is an intermediate length scale, which for d � 2
can be substantially smaller than the coherence length,
1=kF < lK < �K, and lK � �K only in effectively 1D sys-
tems. Another length scale, lRKKY, would arise in dilute
Kondo systems as the one when the RKKY coupling
between neighboring impurities equals TK, lRKKY �

�JN�k�1
F �	

1=dlK < lK [9], where JN�k�1
F � is the dimension-

less spin coupling. The different physical meaning of �K
and lK should be kept in mind for the design of related
experiments. For example, experiments to detect the
Kondo cloud via finite system size, like those proposed
in Refs. [5,6], probe lK rather than �K. These experiments
should be performed on 1D wires in order for lK to be in an
experimentally accessible range. 1D Kondo boxes have up
to now been realized as ultrashort carbon nanotubes [1],
which, however, do not easily permit persistent [5] or
transport [6] current measurements.

In this Letter we show numerical evidence that the
Kondo cloud can be detected via spectroscopy of the
Kondo resonance in a 1D Kondo box. To that end we
establish a nontrivial proportionality between the Kondo
spectral weight and the spin screening length as function of
system size, using large-scale density matrix renormaliza-
tion group (DMRG) calculations [10,11]. The systems
considered here are 1D in the sense that the magnetic
impurity is side coupled to a finite chain of atoms only at
a single site x0 of the chain. This is different from the
ultrasmall boxes considered in Refs. [8,12], where the
effective hybridization was the same for all states in the
box. The latter systems may have been realized most
recently in molecules [13]. As a result of the local coupling
we observe strong mesoscopic variations of TK and of the
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spectral features. We analyze under which mesoscopic
conditions the above-mentioned proportionality prevails.

The Hamiltonian for an Anderson impurity with local
energy "d and on-site Coulomb repulsion U, side coupled
via the hybridization matrix element V to the site x0 on a
1D chain of L sites, reads,

 H � Hch 
 "d
X
�

dy�d� 
 V
X
�

�cyxo�d� 
 H:c:	


Udy" d"d
y
# d#; (2)

where Hch � �t
P
hi;ji;�c

y
i�cj�, i, j � 0; . . . ; L� 1, is the

free chain Hamiltonian with nearest-neighbor hopping t >
0. For the evaluations, we choose the total electron number
N near half band filling (N � L� 2, "F � 0) and use
generic parameters for the model in the Kondo regime,
"d � �0:55,U � 5, and V as indicated where appropriate.
All energies are given in units of the half bandwidth D �
2t. The Kondo spin coupling is given by J � V2�1=j"dj 

1=�"d 
U�	.
TK in finite systems.—As mentioned above, for this

realistic model one expects large finite-size effects, be-
cause the effective impurity-chain coupling, which governs
the low-energy Kondo physics, depends on the amplitudes
of the free-electron eigenfunctions of the chain, �k�x0�, at
the position x0. The Kondo scale TK is defined as the
temperature T at which the 2nd order contribution to the
spin scattering T matrix equals the 1st order [2], a condi-
tion which in the finite system reads

 � 2J
X
k

j�k�x0�j
2

"k � "F

1

e��"k�"F�=TK 
 1
� 1; (3)

with "k the levels of the free chain. It is seen that TK itself
depends on the impurity position x0 [14,15] and on the
system size L as well. The strong x0 dependence of TK�x0�
shown in Fig. 1 is due to the increase of the 1D local DOS
towards the ends of a chain with open boundary conditions
[16]. If x0 is too close to the center of the chain (e.g.,
jx0=L� 1=2j & 160 in Fig. 1), the log contributions in
Eq. (3) are cut off by the level spacing of the finite system
before the breakdown of perturbation theory, so that the
system stays in the perturbative regime for all tempera-
tures, i.e., TK � 0 (Fig. 1). Hence, in an ultrasmall system
the expressions for lK and �K discussed above can, at best,
serve to obtain typical values for these quantities. We find
that the width of the Kondo resonance for various "d, U, V
resembles roughly TK of Eq. (3), however obscured by the
discreteness of the box spectrum. Detecting the Kondo
cloud by varying the system size then becomes a nontrivial
task, since lK itself depends on L. Detailed numerical
calculations are, therefore, needed in order to incorporate
these finite-size effects and to extract the universal features
that persist under these conditions.

Numerical method and testing.—Applying an efficient
DMRG code [17] to the model Eq. (2), we have computed

the (retarded) impurity Green’s function and the equal-time
spin correlation function at T � 0,

 Gd��!� � h0j
�
d�

1

E
 i��H
dy�


 dy�
1

E
 i��H
d�

�
j0i; (4)

 K�r� � h0jSziS
z
xj0i � h0jS

z
i j0ih0jS

z
xj0i; (5)

respectively, for system sizes of up to L � 511. Here ! is
the single-particle excitation energy relative to the many-
body ground state energy E0, E � !
 E0, j0i the DMRG
many-body ground state and Szi , S

z
x the z components of the

spin-1=2 operators on the impurity and on chain site x, r �
x� x0, respectively. The impurity spectral density is
Ad��!� � �

1
� ImGd��!�. Open boundary conditions are

applied to facilitate convergence of the DMRG algorithm.
They also appear appropriate for a wire (weakly) coupled
to leads. For the dynamical quantities we have used both
the correction vector (CV) method [11], and the Lanczos
method (LM) [18]. For the CV method, m � 200 basis
states were retained in each DMRG iteration, which proved
sufficient to compute the residue of the CV �!
 i��
H��1dy�j0iwith a precision of 10�8 for each!. For the LM
we used 3 to 5 target states, kept m � 2600 basis states,
and carried out 200 Lanczos steps to build the Krylov
subspace. The comparison of the two methods for L up
to 128 yields excellent agreement (better than 0.1 per cent)
for ! & TK and still good agreement (better than 10 per-
cent) even for the highest j!j � D, where the LM becomes
inaccurate. Scaling up the system size from L � 128 to
L0 � 511 reduces the frequency range where Lanczos is
accurate by a factor L=L0, which was satisfactory for the
calculations in the Kondo regime. For the largest systems
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FIG. 1 (color online). Finite-size and even/odd effects in the
1D Kondo box. Solid line: TK as a function of impurity position
x0 for L � 511, N � 512, V � 0:35 and open boundary con-
ditions, as obtained from Eq. (3). Open circles: Weight of the
Kondo peak, WK, as defined in the text and in the inset. The
results shown are for even x0 only (see text). The inset shows the
Kondo peak for V � 0:35, x0 � 4 and for various successive
values of L and N.

PRL 97, 136604 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
29 SEPTEMBER 2006

136604-2



(L � 511) we, therefore, used the numerically less de-
manding LM.

Note that all DMRG calculations are done in the canoni-
cal ensemble with fixed electron number N and fixed total
spin S, whereas experimental systems are usually coupled
to a particle reservoir. Lifetime effects of N and S are
included as a Lorentzian (for the CV method) or
Gaussian (for the LM) broadening � of the energy levels,
with � � 0:05 below. x0 is chosen near the end of the
chain, where TK is large enough (see above and Fig. 1) so
that we can sweep through the crossover from �> TK to
�< TK. Furthermore we choose x0 to be even, because on
all odd sites the chain wave function at "F � 0 has a node,
so that for small L (�> TK) the impurity would be
decoupled.

Results.—The T � 0 impurity spectrum Ad��!� shown
in Fig. 2 exhibits a rich multiple peak structure even in the
single-particle spectral weight near ! � "d, induced by
the discrete local conduction electron spectrum even for
the largest L, when the impurity is placed close to the
boundary. The Kondo peak is identified in Fig. 2 as the
one near ! � 0 through its systematically increasing
weight as the interactionU is switched on, as L is increased
(Fig. 4), or as TK is increased by moving the impurity from
x0 � 50 to x0 � 4 (see also Fig. 1). The latter would cor-
respond to decreasing T [8] in a temperature dependent
measurement. For the local impurity coupling V in Eq. (2)
we find that the particle number parity effect in the position
of the spectral features (1 or 2 peaks within j!j & TK) is
essentially washed out by finite-size irregularities of the
local conduction electron spectrum even for small level
broadening � (not shown), in contrast to the pronounced
even/odd characteristics predicted for equal coupling to all
conduction states [8]. However, the even/odd effect is seen
in the inset of Fig. 1 as an enhancement of the Kondo peak
for even as compared to odd N for fixed system size L.

The impurity-conduction electron spin correlation func-
tion K�r�, as computed from Eq. (5), is shown in the inset

of Fig. 3. It displays RKKY oscillations with period
�RKKY � �=kF � 2a (a � lattice constant). Its overall
weight yields s�2P

rK�r� � �nd, with nd the total impu-
rity occupation number, confirming complete screening of
the impurity spin, s � 1=2. The average C�r� � �K�r� 

K�r
 1�	=2 measures the spin content in the Kondo cloud
at distance r, while �K�r� � jK�r� � K�r
 1�j=2 is the
amplitude of the RKKY oscillations. C�r� is shown in
Fig. 3, together with the respective lK as calculated from
Eqs. (1) and (3). The expected 1=rd behavior [7] is clearly
seen for 1=kF � r < lK and V � 0:3, 0.34. For smaller lK
(V � 0:4, 0.45, 0.55) the power-law range is too narrow to
be observable. For r * lK, we find exponential decay,
C�r� / exp��2r=lK� (Fig. 3), and similar for �K�r�. This
is expected for the correlator of two nonconserved quanti-
ties, like Szi , S

z
x, with a finite correlation length. In the

asymptotic region, r lK, the exponential behavior
should be overidden by the slower power-law decay,
C�r� / 1=rd
1, expected from general Fermi liquid argu-
ments [19,20]. The numerical data show indications of this
crossover for the largest L and the smallest lK. A more
detailed analysis of the complex r dependence will be
presented elsewhere.

For V � 0:3 the lK from Eq. (1) is 936> L. C�r� is then
not cut off by lK but by L, and the conduction electron spin
density necessary for complete spin screening is accumu-
lated at shorter distances, leading to a positive y-axis
intersection, see Fig. 3. This displays the difficulty in
extracting lK directly from finite systems and the limited
applicability of Eqs. (1) and (3) for this purpose. Therefore,
we combine the results for Ad��!� and C�r� to obtain an
experimental signature of the (bulk) screening length lK in
the finite-size spectra. In doing so one must observe that for
L & lK, lK itself becomes size and position dependent
according to Eqs. (1) and (3) and that for our system
with fixed total spin there is always a total spin 1=2 in
the cloud, no matter how small L. Therefore, we define the
screening length of the finite system, l�K�L�, by the volume
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FIG. 2 (color online). The impurity spectral density Ad�!� for
L � 127, N � 128, V � 0:35 and two different x0; � � 0:05.
Comparison with the noninteracting spectrum (U � 0) exhibits
the Kondo enhancement of the peak near "F � 0. The inset
shows the upper Hubbard peak near ! � "d 
 U.

0 0.005 0.01 0.015 0.02

1/r

0

0.001

0.002

0.003

0.004

C
(r

)

50 100

-0.02

-0.01

0

K
(r

)

r  [sites]

V=0.30

V=0.55

V=0.30

V=0.55

V=0.34

V=0.40

V=0.45K

lK

lK

lK

l

[sites   ]-1

FIG. 3 (color online). The average C�r� of the spin correlation
function K�r� is shown as function of 1=r for L � 511, N � 512
and various hybridization strengths V; r � x� x0, x0 � 4. Inset:
K�r� showing RKKY oscillations. The V � 0:55 curve is offset
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needed to host a certain fraction c of the total spin,

s�2
Rl�K

0 drK�r� � c, where s � 1=2 is the electron spin.
The Kondo spectral weight is defined as WK�L� �R
"
�"0 d!Ad��!� (cf. Fig. 1, inset), where the boundaries
�"0, ", are chosen so as to cover the Kondo resonance,
identified numerically as that part of the spectrum around
"F which increases as U is switched on (cf. Fig. 2). The
results for both quantities are shown in Figs. 4 and 5 for
c � 0:75 and " � "0 � 0:2. For odd particle number N
(Fig. 4) the nontrivial proportionality l�K�L�=WK�L� �
��J� for the complete range of L is established. We
checked that it persists independent of the precise choice
of ", "0, and c. Both WK�L� and l�K�L� are logarithmically
suppressed with decreasing L (inset of Fig. 4). For univer-
sality reasons we expect the proportionality to extend out
to L! 1, where l�K�L� ! lK�1� must saturate at its bulk
value. The proportionality WK�L� / l

�
K�L� persists for dif-

ferent values of J (Fig. 4), and the corresponding l�K�L� can
be scaled on top of each other by plotting l�K�L�=l

�
K�J� vs

L=l�K�J�, with the scaling parameter l�K�J� � lK�1�. The
above relation can be used to determine l�K�L� by a spec-
troscopic measurement and to extrapolate to its bulk value,
once the proportionality constant ��J� is determined.
Figure 5 displays l�K for even N, showing an earlier satu-
ration compared to Fig. 4, as expected from the even/odd
effect [8]. However, we find WK�L� � const: in this case,
breaking the above proportionality. By an analysis of the
spectra this is traced back to the fact that for the parameters
of Fig. 5 the impurity spectrum is dominated by a strong
L-independent single-particle peak inherited from the free
conduction band, while the spin structure, C�r�, retains its
L dependence. This is to emphasize that it is essential to
identify the "F peak as a Kondo peak first, e.g., by its
logarithmic T or L dependence, before the above analysis
can be applied.

To conclude, we have analyzed the spectral and the spin
structure of ultrasmall Kondo systems in the presence of
strong finite-size fluctuations and even/odd effects using

DMRG. Despite these nonuniversal effects we have iden-
tified a procedure to measure the spin screening length lK
by tunneling spectroscopy, e.g., on carbon nanotube Kondo
boxes. Further research is needed to understand the relation
l�K�L� � �WK�L� and to determine the proportionality fac-
tor ��J�.
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